Characterization of the wood properties of Cedrelinga cateniformis as substitute for timbers used for window manufacturing and outdoor applications

  • Volker Haag
  • Gerald Koch
  • Eckhard Melcher
  • Johannes Welling
Keywords: Biological durability, cellular UV microspectrophotometry, dimension stability, lesser known species, topochemistry, wood anatomy, wood extractives

Abstract

Cedrelinga cateniformis (tornillo) is a timber species of the South American Amazon Basin. In its natural distribution area, the wood has various local uses, such as furniture, art work, door and window frames, and light construction. In order to promote this lesser known species for high valued applications on the international market, wood anatomical, topochemical and physical/mechanical studies were carried out to characterize the wood properties. The topochemical distribution of the lignin and phenolic extractives in the tissue were studied by means of cellular UV microspectrophotometry (UMSP). The results of the structural and topochemical analyses were compared with the interrelation of certain anatomical and subcellular structures as well as the chemical composition with regard to the physical and mechanical properties. The natural durability of the mature heartwood was analyzed according to the European Standards and is resulting in a durability class 1 against basidiomycetes. Based on the findings of the comprehensive investigations concerning physical and biological features, e.g. the dimensional stability and durability, Cedrelinga cateniformis is ideally suited as a substitute for overexploited tropical woods currently used in Europe for wooden window frames and other above ground outdoor applications and thus can contribute to increase the value-added production in Peruvian forests.

Downloads

Download data is not yet available.

References

Barefoot, A.C.; Traywick, J.D. 1971. Mechanical and related properties of Tornillo (Cedrelinga catenaformis). Wood Science 3(4): 245-253.

Blohm, J.H.; Melcher, E.; Lenz, M.T.; Koch, G.; Schmitt, U. 2014. Natural durability of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) heartwood grown in southern Germany. Wood Mater Sci Eng 9(3): 186-191.

Brown, N.; Jennings, S.; Clements, T. 2003. The ecology, silviculture and biogeography of mahogany (Swietenia macrophylla): a critical review of the evidence. Perspect Plant Ecol Evol Syst 6(1): 37-49.

European Committee for Standardization, CEN. 2005. CEN/TS 15083-1: Durability of wood and wood-based Products - Determination of the natural durability of solid wood against wood-destroying fungi, test methods - Part 1: Basidiomycetes; German version.

European Committee for Standardization, CEN. 2016 EN 350: Durability of wood and wood-based products - Testing and classification of the durability to biological agents of wood and wood-based materials; German version.

European Committee for Standardization, CEN. 1994 EN 350-1: Durability of wood and wood-based products - Natural durability of solid wood - Part 1: Guide to the principles of testing and classification of the natural durability of wood; German version.

CIRAD-FORÊT 1998-2011. Tropix 7, Fiches techniques Version 7.5.1. https://tropix.cirad.fr/en/technical-sheets-available. Consulted 06.2019 for Tornillo/Mongo/Light Red Meranti/Dark Red Meranti.

Deutsches Institut für Normung e. V., DIN. 1976-09 DIN 52182: Prüfung von Holz - Bestimmung der Rohdichte (Testing of wood - determination of density). (Beuth Verlag, Berlin).

Deutsches Institut für Normung e. V., DIN. 1979-05 DIN 52184: Prüfung von Holz - Bestimmung der Quellung und Schwindung (Testing of wood - determination of swelling and shrinkage). (Beuth Verlag, Berlin).

Dünisch, O.; Richter, H.G.; Koch, G. 2010. Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Sci Technol 64(3): 301-313.

Fergus, B.J.; Goring, D.A.I. 1970. The distribution of lignin in birch wood as determined by ultraviolet microscopy. Holzforschung 24(4): 118-124.

Foerster, R.; Albrecht, H.; Belisle, M.; Caballero, A.; Galetti, H.; Lacayo, O. ; Ortiz, S. 2003. Forest communities and the marketing of lesser-known tropical hardwoods in Mesoamerica. ISBN 968-7864-47-8 Ciudad de México, Mexico.

Franklin, GL. 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new maceration method for wood. Nature 155(3924): 51.

Goldschmid, O. 1971. Ultraviolet spectra. In Lignins, Occurrence, Formation, Structure and Reactions. Wiley Interscience, New York. ISBN: 0471754226.

Gullison, R.E.; Panfil, S.N.; Strouse, J.J.; Hubbell, S.P. 1992. Regeneración natural de la mara (Swietenia macrophylla) en el bosque chimanes, Bolivia. Ecología en Bolivia 19: 43-56.

Gullison, R.E.; Panfil, S.N.; Strouse, J.J.; Hubbell, S.P. 1996. Ecology and management of mahogany (Swietenia macrophylla King) in the Chimanes Forest, Beni, Bolivia. Bot J Linn Soc 122(1): 9-34.

Grogan, J.; Jennings S.B. Landis, R.M.; Schulze, M.; Baima, A.M.; Lopez, J.D.C.A.; Norghauer, J.M.; Oliveira, L.R.; Pantoja, F.; Pinto, D.; Silva, J.N.M.; Vidal, E.; Zimmerman, B.L. 2008. What loggers leave behind: Impacts on big-leaf mahogany (Swietenia macrophylla) commercial populations and potential for post-logging recovery in the Brazilian Amazon. For Ecol Manag 255(1): 269-281.

Grossheim, C. 2011. Forest Concessions in Peru. In Silviculture in the Tropics (pp. 53-60). Springer, Berlin, Germany.

Günter, S.; Weber, M.; Stimm, B.; Mosandl, R. 2011. Silviculture in the Tropics, Tropical Forestry 8, Springer-Verlag Berlin Heidelberg, Germany.

Hall, J. 2008. Seed and seedling survival of African mahogany (Entandrophragma spp.) in the Central African Republic: implications for forest management. For Ecol Manag 255(2): 292-299.

Hall, J. 2011. Natural Forest Silviculture for Central African Meliaceae. In Silviculture in the Tropics (pp. 219-225). Springer, Berlin, Germany.

Hapla, F.; Saborowski, J. 1987. Stichprobenplanung für holzanatomische Untersuchungen. Holz Roh- Werkst 45(4): 141-144.

Haupt, M.; Leithoff, H.; Meier, D.; Puls, J.; Richter, H.G.; Faix, O. 2003. Heartwood extractives and natural durability of plantation-grown teakwood (Tectona grandis L.) - a case study. Holz Roh- Werkst 61(6): 473-474.

Helmling, S.; Olbrich, A.; Heinz, I.; Koch, G. 2018. Atlas of vessel elements: identification of Asian timbers. IAWA J 39(3): 249-352.

Hillis, W.E. 1996. Formation of robinetin crystals in vessels of Intsia species. IAWA J 17(4): 405-419.

Hillis, W. E. 1998. Deposits in heartshakes in wood – Part 1. Different types. Wood Sci Technol 32(2): 129-137.

Wheeler, E.A.; Baas, P.; Gasson, P.E. (Editors). 1989. List of microscopic features for hardwood identification. IAWA Bull 10(3): 219-332.

Inada, T.; Widiyatno; Hardiwitono, S.; Purnomo, S.; Putra, I.B.W.; Kitajima, K.; Kanzaki, M. 2017. Dynamics of forest regeneration following logging management in a bornean lowland dipterocarp forest. J Trop For Sci 29(2): 185-197.

International Organization for Standardization; ISO. 2014 ISO 13061-2: Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. Genf, Swiss.

International Organization for Standardization; ISO. 2014 ISO/FDIS 13061-13 Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 13: Determination of radial and tangential shrinkage. Genf, Swiss.

Jacobs, K.; Plaschkies, K.; Scheiding, W.; Weiß, B.; Melcher, E.; Conti, E.; Fojutowski, A.; Le Bayon, I. 2019. Natural durability of important European wood species against wood decay fungi. Part 2: Field tests and fungal community. Int Biodeter Biodegr 137(2019): 118-126.

Kleist, G.; Schmitt, U. 1999. Evidence of accessory compounds in vessel walls of Sapelli heartwood (Entandrophragma cylindricum) obtained by transmission electron microscopy. Holz Roh- Werkst 57(2): 93-95.

Koch, G.; Grünwald, C. 2004. Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In Wood fibre cell walls: method to study their formation, structure and properties. Schmitt U (Ed.). COST Action E20 book. pp 119-130. Swedish University of Agricultural Sciences. Uppsala, Sweden.

Koch, G.; Richter, H.G.; Schmitt, U. 2006. Topochemical investigation on phenolic deposits in the vessels of afzelia (Afzelia spp.) and merbau (Intsia spp.) heartwood. Holzforschung 60(6): 583-588.

Koch, G.; Kleist, G. 2001. Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55(6): 563-567.

Koch, G. 2016. Rotes Meranti für den konstruktiven Fensterbau. In: Rotes Meranti aus Malaysia für den Einsatz im Fensterbau. Kuala Lumpur: Malaysian Timber Council, pp 10-11.

Meyer, L.; Brischke, C.; Melcher. E.; Brandt, K.; Lenz, M.T.; Soetbeer, A. 2014. Durability of English oak (Quercus robur L.) - Comparison of decay progress and resistance under various laboratory and field conditions. Int Biodeter Biodegr 86: 79-85.

Putzel, L.; Peters, C. M.; Romo, M. 2011. Post-logging regeneration and recruitment of shihuahuaco (Dipteryx spp.) in Peruvian Amazonia: Implications for management. For Ecol Manage 261(6): 1099-1105.

Purwaningsih; Kintamani, E. 2018. The Diversity of Shorea spp. (Meranti) at Some Habitats. In Indonesia IOP Conf. Series: Earth and Environmental Science 197(1): 012034.

Rodríguez Anda, R.; Koch, G.; Richter, H.G.; Fuentes Talavera, F.J.; Silva Guzman, J.A.; Satyanarayana, K.G. 2019. Formation of heartwood, chemical composition of extractives and natural durability of plantation grown teak wood from Mexico. Holzforschung 73(6): 547-557.

Scholz, G.; Liebner, F.; Koch, G.; Bues; C.T.; Günther, B.; Bäucker, E. 2007. Chemical, anatomical and technological properties of Snakewood [Brosimum guianense (Aubl.) Huber]. Wood Sci Technol 41(8): 673-686.

Sell, J. 1997. Eigenschaften und Kenngrössen von Holzarten. Baufachverlag Lignum. Schweizerische Arbeitsgemeinschaft für das Holz, Zürich, Swiss.

Silva Guzmán, J.A. 2012. Proyecto ITTO PD 385/05: Industrialización, Comercialización y Manejo Sostenible de Diez Especies Nativas Mexicanas. Capítulo 3: Caracterización tecnológica de las especies de madera. Informe final Universidad de Guadalajara, Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías. Guadalajara, Jalisco, Mexico.

Sist, P.; Nolan, T.; Bertault, J.G.; Dykstra D. 1998. Harvesting intensity versus sustainability in Indonesia. For Ecol Manage 108(3): 251-260.

Sist, P.; Nguyen-Thé, N. 2002. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan (1990–1996). For Ecol Manag 165(1-3): 85-103.

Sist, P.; Fimbel, R.; Nasi, R.; Sheil, D.; Chevallier, M.H. 2003. Towards sustainable management of mixed dipterocarp forests of South East Asia: moving beyond minimum diameter cutting limits. Environ Conserv 30(4): 364-374.

Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26(1): 31-43.

Verwer, C.; Pena-Claros, M.; Van Der Staak, D.; Ohlson-Kiehn, K.; Sterck, F.J. 2008. Silviculture enhances the recovery of overexploited mahogany Swietenia macrophylla. J Appl Ecol 45(6): 1770-1779..
Published
2019-09-02
How to Cite
Haag, V., Koch, G., Melcher, E., & Welling, J. (2019). Characterization of the wood properties of Cedrelinga cateniformis as substitute for timbers used for window manufacturing and outdoor applications. Maderas. Ciencia Y Tecnología, 22(1). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/3820