Effect of press temperature on some properties of cement bonded particleboard

  • Husnu Yel
  • Ayfer Donmez Cavdar
  • Sevda Boran Torun
Keywords: Mechanical properties, physical prioperties, Picea orientalis, Populus tremula, thermal properties


It is known that there is a correlation between hydration heat and physico-mechanical properties of wood based cement panels.  Cement hydration is affected by many variables, such as chemical composition, water/cement ratio, wood/cement ratio, wood chemical properties, mineral additions and producing conditions. This study mainly aimed to investigate the effects of press temperature on some properties of three-layer cement bonded particleboard made from the particles of spruce (Picea orientalis) and poplar (Populus tremula). For this purpose, a total of 16 experimental board groups with 1200 kg/m3 target density and 1/3 wood-cement ratio were produced at the press temperatures of (20, 30, 40, 50, 60, 70 and 80) °C. As cement curing accelerator, CaCl2 was used at a rate of 5 % (cement weight basis). The physical, mechanical and thermal properties of the boards were determined. The results indicated that the press temperature substantially affected the properties of cement-bonded particleboard depending on the wood species. In the light of this study, the optimum temperatures in producing of cement-bonded particleboard were found as 40 °C for poplar wood and 60 °C for spruce wood.


Download data is not yet available.


Ashori, A.; Tabarsa, T.; Amosi, F. 2012a. Evaluation of using waste timber railway sleepers in wood-cement composite materials. Constr Build Mater 27(1): 126-129. https://doi.org/10.1016/j.conbuildmat.2011.08.016.

Ashori, A.; Tabarsa, T.; Sepahvand, S. 2012b. Cement-bonded composite boards made from poplar strands. Constr Build Mater 26(1): 131-134. https://doi.org/10.1016/j.conbuildmat.2011.06.001.

American Society of Testing Materials. 2012. ASTM D1037-12: Standard test method for evaluating properties of wood-base fiber and particle panel materials. ASTM International, West Conshohocken, PA, USA. https://www.astm.org/Standards/D1037.htm

Biblis, E.J.; Lo, C.F. 1968. Sugars and other wood extractives: effect on the setting of southern pine cement mixture. Forest Prod J 18(8): 28-34.

British Standards Institution. 1993. BS EN 310: Wood-based panels. Determination of modulus of elasticity in bending and bending strength. BSI, London, UK. URL: https://shop.bsigroup.com/ProductDetail/?pid=000000000000299457.

British Standards Institution. 1993. BS EN 317: Particleboards and fibreboards-determination of swelling in thickness after immersion in water. BSI, London, UK. URL: https://shop.bsigroup.com/ProductDetail/?pid=000000000000299500.

British Standards Institution. 1993. BS EN 319: Particleboards and fiberboards, determination of tensile strength perpendicular to plane of the board. BSI, London, UK. URL: https://shop.bsigroup.com/ProductDetail?pid=000000000000299524.

British Standards Institution. 1993. BS EN 322: Wood-based panels. Determination of moisture content. BSI, London, UK. URL: https://shop.bsigroup.com/ProductDetail/?pid=000000000000299551.

British Standards Institution. 1993. BS EN 323: Wood-based panels, Determination of density. BSI, London, UK. URL: https://shop.bsigroup.com/ProductDetail/?pid=000000000000299563.

British Standards Institution. 1995. BS EN 634-1: Cement-bonded particleboards. Specifications - part 1: general requirements. BSI, London, UK. URL: https://shop.bsigroup.com/ProductDetail/?pid=000000000000611493.

British Standards Institution. 1997. BS EN 634-2: Cement-bonded particleboards. Specifications - part 2: Requirements for OPC bonded particleboards for use in dry, humid and external conditions. BSI, London, UK. URL: https://shop.bsigroup.com/ProductDetail/?pid=000000000000934407.

British Standards Institution. 1993. BS EN 320: Particleboards and fibreboards - determination of resistance to axial withdrawal of screws. BSI, London, UK. URL: https://standards.globalspec.com/std/1389134/BS%20EN%20320.

Cabangon, R.J. 1997. Rapid curing of wood wool cement boards from yemane (Gmelina arborea R.Br.) by direct heat application during pressing. M.S. Thesis. University of the Philippines, Los Baños, Laguna, Philippines.

Cabrera, J.G.; Lynsdale, C.J. 1996. The effect of super-plasticisers on the hydration of normal Portland cement (in Italian). L'industria italiana del cemento 66(712): 532-541.

Del Menezzi, C.H.S.; Gomez de Castro, V.; Rabelo de Souza, M. 2007. Production and properties of a medium density wood-cement boards produced with oriented strands and silica fume. Maderas-Cienc Tecnol 9(2): 105-115. http://dx.doi.org/10.4067/S0718-221X2007000200001.

Donmez Cavdar, A.; Yel, H., Boran, S.; Pesman, E. 2017. Cement type composite panels manufactured using paper mill sludge as filler. Constr Build Mater 142: 410-416. https://doi.org/10.1016/j.conbuildmat.2017.03.099.

Fan, M.Z.; Bonfield, P.W.; Dinwoodie, J.M.; Boxall, J.; Breese, M.C. 2004. Dimensional instability of cement-bonded particleboard: The effect of surface coating. Cement Concrete Res 34(7): 1189-1197. https://doi.org/10.1016/j.cemconres.2003.12.010.

Fischer, F.; Wienhaus, O.; Ryssel, M.; Olbrech, J. 1974. Die wasserlöslichen kohlenhydrate des holzes und ihr einfluss auf die herstellung von holzwolle-leichtauplatten. Holztechnologie 15(1): 12-19.

Hachmi, M.H., Moslemi, A.A. 1990. Effect of wood pH and buffering capacity on wood-cement compatibility. Holzforschung 44(6): 425-430. https://doi.org/10.1515/hfsg.1990.44.6.425.

Janusa, M.A.; Champagne, C.A.; Fanguy, J.C.; Heard, G.E.; Laine, P.L.; Landry, A.A. 2000. Solidification/stabilization of lead with the aid of bagasse as an additive to Portland cement. Microchem J 65(3): 255-259. https://doi.org/10.1016/S0026-265X(00)00120-X.

Jorge, F.C.; Pereira, C.; Ferreira, J.M.F. 2004. Wood-cement composites: A review. Holz Roh Werkst 62(5): 370-377. https://doi.org/10.1007/s00107-004-0501-2.

Kalaycioglu, H., Yel, H., Donmez Cavdar, A. 2012. Wood wool cement boards and its applications (in Turkish). Kastamonu Univ Orman Fak Derg 12(1): 122-133. URL: https://dergipark.org.tr/tr/download/article-file/159615.

Kim, H.S.; Kim, S.; Kim, H.J.; Yang, H.S. 2006. Thermal properties of bio-flour-filled polyoefin composites with different compatibilizing agent type and content. Thermochim Acta 451(1-2): 181-188. https://doi.org/10.1016/j.tca.2006.09.013

Maail, R.S.; Umemura, K.; Aizawa, H.; Kawai, S. 2011. Curing and degradation processes of cement-bonded particleboard by supercritical CO2 treatment. J Wood Sci 57(4): 302-307. https://doi.org/10.1007/s10086-011-1179-9

Miller, D.P.; Moslemi, A.A. 1991. Wood-cement composites: effect of model compounds on hydration characteristics and tensile strength. Wood Fiber Sci 23(4): 472-482. URL: https://wfs.swst.org/index.php/wfs/article/view/2119

IBM SPSS Statistics. 2018. SPSS Statistics V21.0. IBM. New York, USA. URL: https://www.ibm.com/support/pages/release-notes-ibm-spss-statistics-210
Sandermann, W.; Kohler, R. 1964. Über eine kurze eignungsprüfung von hölzern für zementgebundene werkstoffe. Holzforschung 18(1-2): 53-59.

Shafiq, N.; Nuruddin, M.F. 2010. Degree of hydration of OPC and OPC/FA pastes dried in different relative humidity. J Concr Res Lett 1(3): 81-89. URL: https://pdfs.semanticscholar.org/be70/a3b11316fec3751f3d9d298e5d35001ebcb5.pdf?_ga=2.41600235.856399216.1574850643-1886985546.1572353688

Simatupang, M.H. 1979. Water requirement for the production of cement-bonded particleboard. Eur J Wood Wood Prod 37(10): 379-382. https://doi.org/10.1007/BF02610947

Tabarsa, T.; Ashori, A. 2011. Dimensional stability and water uptake properties of cement-bonded wood composite. J Polym Environ 19(2): 518-521. https://doi.org/10.1007/s10924-011-0295-3

Thomas, N.L.; Birchall, J.D. 1983. Retarding action of sugars on cement hydration. Cement Concrete Res 13(6): 830-842. https://doi.org/10.1016/0008-8846(83)90084-4

Tittelein, P.; Cloutier, A.; Bissonnette, B. 2012. Design of a low-density wood–cement particleboard for interior wall finish. Cement Concrete Comp 34(2): 218-222. https://doi.org/10.1016/j.cemconcomp.2011.09.020

Weatherwax, R.C.; Tarkow, H. 1964. Effect of wood on setting of Portland cement. Forest Prod J 14(12): 567-570.

Yel, H.; Kalaycioglu, H.; Donmez Cavdar A.; Oran, B. 2010. Effects of Al2(SO4)3 and Na2SiO3 on some physical and mechanical properties of cement-bonded oriented strand boards with hybrid aspen (populus euroamericana cv.) strands., In: The 1st International Symposium on Turkish & Japanese Environment and Forestry. Vol 2: 665-677. Trabzon, Turkey.

Yel, H., Donmez Cavdar, A.; Kalaycioglu, H. 2011. Mechanical and physical properties of cement-bonded particleboard made from tea residues and hardboards. Key Eng Mater 471-472: 572-577. https://doi.org/10.4028/www.scientific.net/KEM.471-472.572

Yel, H. 2015. Effects of some manufacturing factors on the properties of cement bonded particleboards. PhD. Dissertation. Karadeniz Technical University, Trabzon, Turkey.

Yel, H.; Kalaycioglu, H.; Aras, U. 2017. Utilization of silica fume in manufacturing of cement bonded particleboards. Pro Ligno 13(4): 257-263. URL: http://www.proligno.ro/ro/articles/2017/4/YEL.pdf
How to Cite
Yel, H., Donmez Cavdar, A., & Boran Torun, S. (2020). Effect of press temperature on some properties of cement bonded particleboard. Maderas. Ciencia Y Tecnología, 22(1). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/3895