Photostability of acetylated wood coated with nano zinc oxide

Authors

  • Giridhar B. Nagarajappa
  • Sreeja Nair
  • Kavyashree Srinavas
  • Anantha N. Subba Rao
  • Krishna K. Pandey

Keywords:

Chemical modification, nano material, photodegradation, zinc oxide, wood, Wrightia tinctorial

Abstract

Chemical modification with acetic anhydride is an effective method to stabilise wood against dimensional movement and improve decay resistance of wood. It has also been reported to retard UV light induced color darkening on wood surface. Coatings of wood surfaces with certain nano metal oxides have also shown promise as UV screening agent. In this work, we have evaluated synergistic effect of acetylation of wood and application of nano material on wood surfaces to enhance their UV stability. Photo-stability of acetylated Wrightia tinctoria wood coated with zinc oxide (ZnO) nanodispersion was evaluated by irradiating these wood specimens to UV radiation in an accelerated weathering tester. Acetylation of wood with acetic anhydride exhibited photo-bleaching and inhibited light-induced color darkening observed in unmodified wood. Coating of unmodified and modified wood surfaces with ZnO nanodispersion reduced photo-discolouration and degradation of wood polymers. The photo-bleaching observed in chemically modified wood upon light irradiation was further enhanced by application of nano coating on wood surfaces.

Downloads

Download data is not yet available.

References

Afrouzi, Y.M.; Omidvar, A.; Marzbani, P. 2013. Effect of artificial weathering on the wood impregnated with nano-zinc oxide. World Appl Sci J 22(9): 1200-1203. https://doi.org/10.5829/idosi.wasj.2013.22.09.996

Anderson, E.L.; Pawlak, Z.; Owen, N.L.; Feist, W.C. 1991. Infrared studies of wood weathering, part 1: Softwoods. Appl Spectrosc 45(4): 641-647. https://www.osapublishing.org/as/abstract.cfm?URI=as-45-4-641

Bonifazi, G.; Calienno, L.; Capobianco, G.; Monaco, A.L.; Pelosi, C.; Picchio, R.; Serranti, S. 2017. A new approach for the modelling of chestnut wood photo-degradation monitored by different spectroscopic techniques. Environ Sci Pollut Res 24(16): 13874-13884. https://doi.org/10.1007/s11356-016-6047-0

Calienno, L.; Pelosi, C.; Picchio, R.; Agresti, G.; Santamaria, U.; Balletti, F.; Monaco, A.L. 2015. Light-induced colour changes and chemical modification of treated and untreated chestnut wood surface. Stud Conserv 60(2): 131-139. https://doi.org/10.1179/2047058413Y.0000000119

Capobianco, G.; Bracciale, M.P.; Sali, D.; Sbardella, F.; Belloni, P.; Bonifazi, G.; Guidi, M.G. 2017. Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products in artwork cross-section. Microchem J 132: 69-76. https://doi.org/10.1016/j.microc.2017.01.007

Chang, H.T.; Chang, S.T. 2002. Moisture excluding efficiency and dimensional stability of wood improved by acylation. Bioresour Technol 85(2): 201-204. https://doi.org/10.1016/S0960-8524(02)00085-8

Chang, S.T.; Chang, H.T. 2001. Inhibition of the photodiscolouration of wood by butyrylation. Holzforschung 55(3): 255-259. https://doi.org/10.1515/HF.2001.042

Clausen, C.A.; Green, F.; Kartal, S.N. 2010. Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Res Lett 5(9): 1464–1467. https://doi.org/10.1007/s11671-010-9662-6

Cogulet, A.; Blanchet, P.; Landry, V. 2016. Wood degradation under UV irradiation: A lignin characterization. J Photochem Photobiol B 158: 184–191. https://doi.org/10.1016/j.jphotobiol.2016.02.030

Cristea, M.V.; Riedl, B.; Blanchet, P. 2010. Enhancing the performance of exterior water- borne coatings for wood by inorganic nanosized UV absorbers. Prog Org Coat 69(4): 432–441. https://doi.org/10.1016/j.porgcoat.2010.08.006

Evans, P.D.; Wallis, A.F.A.; Owen N.L. 2000. Weathering of chemically modified wood surfaces. Natural weathering of Scots pine acetylated to different weight gains. Wood Sci Technol 34: 151-165. https://doi.org/10.1007/s002260000039

Feist, W.C.; Hon, D.N.S. 1984. Chemistry of weathering and protection. In The Chemistry of Solid Wood. Rowell, R. M. (Ed.) American Chemical Society: Washington DC, USA. Chapter 11: 401-451. https://doi.org/10.1021/ba-1984-0207.ch011

Forsthuber, B.; Schaller, C.; Grull, G. 2013. Evaluation of the photo stabilising efficiency of clear coatings comprising organic UV absorbers and mineral UV screeners on wood surfaces. Wood Sci Technol 47(2): 281–297. https://doi.org/10.1007/s00226-012-0487-6

Giridhar, B.N.; Pandey, K.K.; Prasad, B.E.; Bisht, S.S.; Vagdevi, H.M. 2017. Dimensional stabilization of wood by chemical modification using isopropenyl acetate. Maderas-Cienc Tecnol 19(1): 15-20. http://dx.doi.org/10.4067/S0718-221X2017005000002

Gonzalez de Cademartori, P.H.; Missio, A.L.; Dufau Mattos, B.; Gatto, D.A. 2015. Natural weathering performance of three fast-growing Eucalypt woods. Maderas-Cienc Tecnol 17(4): 799-808. http://dx.doi.org/10.4067/S0718-221X2015005000069

Habibzade, S.; Omidvar, A.; Farahani, M.R.M.; Mashkour, M. 2014. Effect of nano-ZnO on decay resistance and artificial weathering of wood polymer composite, J Nanomater Mol Nanotechnol 3:3 http://dx.doi.org/10.4172/2324-8777.1000146

Hon, D.N.S. 2001. Weathering and Photochemistry of wood. In Wood and Cellulosic Chemistry. Hon, D.N.S.; Shirashi, N. (Eds.), Marcel Decker Ink., New York., USA. p. 525-555.

Hon, D.N.S.; Chang, S.T. 1984. Surface degradation of wood by ultraviolet light. J Polym Sci A 22(9): 2227–2241. https://doi.org/10.1002/pol.1984.170220923

Jebrane, M.; Sebe, G.; Cullis, I.; Evans, P.D. 2009. Photostabilization of wood using aromatic vinyl esters. Polym Degrad Stab 94(2): 151-157. https://doi.org/10.1016/j.polymdegradstab.2008.11.013

Kalnins, M.A. 1984. Photochemical degradation of acetylated, methylated, phenylhydrazine modified and ACC-treated wood. J Appl Polym Sci 29(1): 105–115. https://doi.org/10.1002/app.1984.070290111

Lowry, M.S.; Hubble, D.R.; Wressell, A.L.; Vratsanos, M.S.; Pepe, F.R.; Hegedus, C.R. 2008. Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation. J Coat Technol Res 5(2): 233–239. https://doi.org/10.1007/s11998-007-9064-6

Matsuda, H. 1996. Chemical modification of solid wood. In Chemical Modification of lignocellulosic materials. Hon, D.N.S. (Ed.). Marcel Dekker, New York, USA. p. 159-183.

Mitsui, K. 2010. Acetylation of wood causes photobleaching. J Photochem Photobiol B 101(3): 210–214. https://doi.org/10.1016/j.jphotobiol.2010.07.005

Muller, U.; Ratzsch, M.; Schwanninger, M.; Steiner, M.; Zobi, H. 2003. Yellowing and IR changes of spruce wood as a result of UV-irradiation. J Photochem Photobiol B 69(2): 97-105. https://doi.org/10.1016/S1011-1344(02)00412-8

Nagarajappa, G.B.; Pandey, K.K. 2016. UV resistance and dimensional stability of wood modified with isopropenyl acetate. J Photochem Photobiol B 155: 20-27. https://doi.org/10.1016/j.jphotobiol.2015.12.012

Nagarajappa, G.B.; Pandey, K.K.; Shinde, A.; Vagdevi, H.M. 2015. N-Bromosuccinimide (NBS)–An efficient catalyst for acetylation of wood. Holzforschung 70(5): 421–427. https://doi.org/10.1515/hf-2015-0088

Nair, S.; Nagarajappa, G.B.; Pandey, K.K. 2018. UV stabilization of wood by nano metal oxides dispersed in propylene glycol. J Photochem Photobiol B 183: 1–10. https://doi.org/10.1016/j.jphotobiol.2018.04.007

Oberhofnerová, E.; Pánek, M.; García-Cimarras, A. 2017. The effect of natural weathering on untreated wood surface. Maderas-Cienc Tecnol 19(2): 173-184. http://dx.doi.org/10.4067/S0718-221X2017005000015

Ohkoshi, M. 2002. FTIR-PAS study of light induced study in the surface of acetylated or poly ethylene glycol-impregnated wood. J Wood Sci 48(5): 394-401. https://doi.org/10.1007/BF00770699

Pandey, K.K. 2005. Study of effect of photo-irradiation on surface chemistry of wood. Polym Degrad Stab 90(1): 9-20. https://doi.org/10.1016/j.polymdegradstab.2005.02.009

Pandey, K.K.; Chandrashekar, N. 2006. Photostability of wood surfaces esterified by benzoyl chloride. J Appl Polym Sci 99(5): 2367-2374. https://doi.org/10.1002/app.22685

Pandey, K.K.; Pitman, A. 2002. Weathering characteristics of modified rubberwood (Hevea brasiliensis). J Appl Polym Sci 85(3): 622–631. https://doi.org/10.1002/app.10667

Pandey, K.K.; Srinivas, K. 2015. Performance of polyurethane coatings on acetylated and benzoylated rubberwood. Eur J Wood Wood Prod 73(1): 111-120. https://doi.org/10.1007/s00107-014-0860-2

Pandey, K.K.; Vuorinen, T. 2008. Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym Degrad Stab 93(12): 2138-2146. https://doi.org/10.1016/j.polymdegradstab.2008.08.013

Plakette, D.V.; Dunningham, E.A.; Singh, A.P. 1996. Weathering of chemically modified wood. In Chemical Modification of lignocellulosic materials, Hon, D.N.S. (Ed). Marcel Dekker, New York, USA. p. 277-294.

Rowell, R.M. 2005. Chemical modification of wood. In Handboook of Wood Chemistry and Wood Composite. Rowell, R.M. (Ed). Taylor and Francis, CRC Press, Florida, USA. p. 381-420.

Rowell, R.M. 2006. Chemical modification of wood: a short review. Wood Mat Sci Eng 1(1): 29–33. https://doi.org/10.1080/17480270600670923

Rowell, R.M. 2013. Chemical modification of wood. In Handboook of Wood Chemistry and Wood Composite. Rowell, R.M. (Ed). Taylor and Francis, CRC Press, Florida, USA. p. 537–598.

Rowell, R.M. 2017. Mechanism of exterior coating performance of acetylated wood. In Lignocellulosic Fibre and Biomass-Based Composite Materials. Processing properties and applications. Jawaid, M.; Tahir, P.M.; Saba, N. (Ed). Woodhead publishing, USA. p. 409-422.

Sahin, H.T.; Mantanis, G.I. 2011. Colour changes in wood surfaces modified by a nanoparticulate based treatment, Wood Res-Slovakia 56(4): 525-532. http://www.woodresearch.sk/wr/201104/08.pdf

Salla, J.; Pandey, K.K.; Srinivas, K. 2012. Improvement of UV resistance of wood surfaces by using zinc oxide nanoparticles. Polym Degrad Stab 97(4): 592-596. https://doi.org/10.1016/j.polymdegradstab.2012.01.013

Takahashi, M. 1996. Biological properties of chemically modified wood. In Chemical Modification of lignocellulosic materials. Hon, D.N.S. (Ed). Marcel Dekker, New York, USA. p. 331-361.

Temiz, A. Terziev, N.; Jacobsen, B.; Eikenes, M. 2006. Weathering, water absorption, and durability of silicon, acetylated, and heat‐treated wood. J Appl Polym Sci 102(5): 4506-4513. https://doi.org/10.1002/app.24878

Timar, M.C.; Varodi, A.M.; Gurau, L. 2016. Comparative study of photodegradation of six wood species after short-time UV exposure. Wood Sci Technol 50(1): 135-163. https://doi.org/10.1007/s00226-015-0771-3

Tolvaj, L.; Faix, O. 1995. Artificial ageing of wood monitored by DRIFT spectroscopy and CIEL*a*b* colour measurements. 1. Effect of UV light. Holzforschung 49(5): 397-404. https://doi.org/10.1515/hfsg.1995.49.5.397

Tolvaj, L.; Nemeth, R.; Pasztory, Z.; Bejo, L.; Takats, P. 2014. Colour stability of thermally modified wood during short-term photodegradation. BioResources 9(4): 6644-6651. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/6080

Tolvaj, L.; Popescu, C.B.; Molnar, Z.; Preklet, E. 2015. Effects of air relative humidity and temperature on photodegradation processes in beech and spruce wood. BioResources 11(1): 296-305. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_1_296_Tolvaj_Air_Relative_Humidity_Photodegradation

Vollmer, S.; Evans, P.D. 2013. Performance of clear coatings on modified wood exposed to the weather for 2 years in Australia. Int Wood Prod J 4(3): 177–182. https://doi.org/10.1179/2042645313Y.0000000042

Williams, R.S. 2005. Weathering of wood In Handbook of Wood Chemistry and Wood Composites. Rowell, R.M. (Ed). Taylor and Francis, CRC Press, Florida, USA. p. 139-185.

Zivkovic, V.; Arnold, M.; Pandey, K.K.; Richter, K.; Turkulin, H. 2016. Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: correspondence of physical and chemical changes in natural weathering. Wood Sci Technol 50(5): 989-1002. https://doi.org/10.1007/s00226-016-0834-0

Downloads

Published

2020-07-01

How to Cite

B. Nagarajappa, G., Nair, S., Srinavas, K., N. Subba Rao, A., & K. Pandey, K. (2020). Photostability of acetylated wood coated with nano zinc oxide. Maderas-Cienc Tecnol, 22(3), 365–374. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4088

Issue

Section

Article