The efficiency of Pistacia atlantica gum for increasing resistance of rapeseed oil-heat treated wood to fungal attacks

  • Morad Mahmoud Kia
  • Asghar Tarmian
  • Ali Naghi Karimi
  • Hadi Gholamiyan
  • Ali Abdulkhani
  • Mohamad Reza Mastri Farahani
Keywords: Fungal resistance, oil-heat treated wood, Penicillium expansum, Pistacia atlantica, Populus deltoids, Trametes versicolor

Abstract

In this research, we used Pistacia atlantica gum during cooling phase of oil-heat treatment of poplar wood (Populus deltoids) to improve its resistance to the white-rot fungus Trametes versicolor and growth of the mold fungus Penicillium expansum. Thermal modification was carried out using rapeseed oil at 180 °C, 200 °C and 220 °C for 2 hours and 4 hours. The modified wood specimens were then directly cooled in the oil containing 0 %, 5 % and 10 % (w/w) of the gum at 25 °C for 30 minutes. The chemical constituents of the essential oil extracted with a Clevenger type apparatus were determined by chromatography–mass spectrometry (GC-MS). The amounts of α-pinene, β-pinene and α-terpinolene of the essential oil were 60,2 %, 8,7 % and 3,9 %, respectively. The mold resistance was greatly improved, while the improvement against the decay fungus was only observed for the specimens modified at 180 °C. Our results confirmed that the enhanced fungal resistance was not only due to the presence of monoterpenes in the essential oil, but also to a further reduction in the hygroscopicity of the treated wood.

Downloads

Download data is not yet available.

References

Ahmed, H.M. 2017. Traditional uses of Kurdish medicinal plant Pistacia atlantica subsp. kurdica Zohary in Ranya, Southern Kurdistan. Genet Resour Crop Evol 64(6): 1473–1484. https://doi.org/10.1007/s10722-017-0522-4

Ahmed, S.A.; Morén, T.; Sehlstedt-Persson, M.; Blom, A. 2017. Effect of oil impregnation on water repellency, dimensional stability and mold susceptibility of thermally modified European aspen and downy birch wood. J Wood Sci 63(1): 74–82 https://doi.org/10.1007/s10086-016-1595-y

Alma, M.H.; Nitz, S.; Kollmannsberger, H.; Digrak, M.; Efe, F.T.; Yilmaz, N. 2004. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J Agric Food Chem 52(12): 3911-3914. https://doi.org/10.1021/jf040014e

American Society for Testing and Materials. ASTM. 1996. D4445-91e1: Standard test method for fungicides for controlling sapstain and mold on unseasoned lumber (laboratory method). ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D4445-91R96E01

Bahmani, M.; Schmidt, O. 2018. Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas-Cienc Tecnol 20(3): 325-332. http://dx.doi.org/10.4067/S0718-221X2018005003301

Barrero, A.F.; Herrador, M.M.; Arteaga, J.F.; Akssira, M.; Mellouki, F.; Belgarrabe, A. 2005. Chemical Composition of the Essential Oils of Pistacia atlantica Desf. J Essent Oil Res 17(1): 52-54. https://doi.org/10.1080/10412905.2005.9698828

Benhammou, N.; Bekkara, F.A.; Panovska, T.K. 2008. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr J Pharm Pharmacol 2(2): 22-28. https://academicjournals.org/journal/AJPP/article-full-text-pdf/86CD3DD32024

Boonstra, M.J.; van Acker, J.; Kegel, E.; Stevens, M. 2007. Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41(1): 31–57 https://doi.org/10.1007/s00226-006-0087-4

Calonego, F.W.; Severo, E.T.D.; Furtado, E.L. 2010. Decay resistance of thermally-modified Eucalyptus grandis wood at 140 °C, 160 °C, 180 °C, 200 °C and 220 °C. Bioresour Technol 101(23): 9391-9394. https://doi.org/10.1016/j.biortech.2010.06.119

Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. 2016. Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines 3(4): 25. https://doi.org/10.3390/medicines3040025

Esteves, M.; Pereira, H.M. 2009. Wood modification by heat treatment: a review. Bioresources 4(1): 370-404. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_04_1_%23%23%23%23_Esteves_P_Wood_Mod_Heat_Treatment

European Committee for Standardization. CEN. 1996. EN 113: Wood preservatives-method of test for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values. Brussels, Belgium.

Fernández-Costas, C.; Palanti, S.; Charpentier, J.P.; Sanromán, M.A.; Moldes, D. 2017. A Sustainable Treatment for Wood Preservation: Enzymatic Grafting of Wood Extractives. ACS Sustainable Chem Eng 5(9): 7557–7567. https://doi.org/10.1021/acssuschemeng.7b00714

Fidah, A.; Salhi, N.; Rahouti, M.; Kabouchi, B.; Ziani, M.; Aberchane, M.; Famiri, A. 2016. Natural durability of Cedrus atlantica wood related to the bioactivity of its essential oil against wood decaying fungi. Maderas-Cienc Tecnol 18(4): 567-576. http://dx.doi.org/10.4067/S0718-221X2016005000049

Habibi Najafi, M.B.; Hajimohamadi Farimani, R.; Tavakoli, J.; Madayeni, S. 2014. GC-MS Analysis and Antimicrobial Activity of the Essential Oil of Trunk Exudates of Pistacia atlantica var. mutica. Chem Nat Compd 50(2): 376-378. https://doi.org/10.1007/s10600-014-0959-z

Hakkou, M.; Pétrissans, M.; Gérardin, P.; Zoulalian, A. 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91(2): 393-397. https://doi.org/10.1016/j.polymdegradstab.2005.04.042

Hamelian, M.; Hemmati, S.; Varmira, K.; Veisi, H. 2018. Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. J Taiwan Inst Chem E 93: 21–30 https://doi.org/10.1016/j.jtice.2018.07.018

Hill, C.A.S. 2006. Wood modification: chemical, thermal and other processes. John Wiley & Sons Ltd, Chichester, West Sussex, England.

Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P.M. 2018. Thermal treatment of wood using vegetable oils: A review. Constr Build Mater 181: 408-419. https://doi.org/10.1016/j.conbuildmat.2018.06.058

Lyona, F.; Thevenonb, M.F.; Hwangc, W.J.; Imamurac, Y.; Grila, J.; Pizzi, A. 2007. Effect of an oil heat treatment on the leachability and biological resistance of boric acid impregnated wood. Ann Forest Sci 64(6): 673–678. http://dx.doi.org/10.1051/forest:2007046

Mohareb, A.S.; Badawy, M.E.; Abdelgaleil, S.A. 2013. Antifungal activity of essential oils isolated from Egyptian plants against wood decay fungi. J Wood Sci 59(6): 499-505. https://doi.org/10.1007/s10086-013-1361-3

Mohebby, B.; Kevily, H.; Kazemi-Najafi, S. 2014. Oleothermal modification of fir wood with a combination of soybean oil and maleic anhydride and its effects on physico-mechanical properties of treated wood. Wood Sci Technol 48(4): 797–809. https://doi.org/10.1007/s00226-014-0640-5

Pourya, M.; Sadeghi, A.; Ghobari, H.; Clauvis Nji Tizi Taning, C.N.T.; Smagghe, G. 2018. Bioactivity of Pistacia atlantica desf. Subsp. Kurdica (Zohary) Rech. F. and Pistacia khinjuk stocks essential oils against Callosobruchus maculatus (F, 1775) (Coloeptera: Bruchidae) under laboratory conditions. J Stored Prod Res 77: 96-105. https://doi.org/10.1016/j.jspr.2018.03.007

Pánek, M.; Reinprecht, L.; Hulla, M. 2014. Ten essential oils for beech wood protection-efficacy against wood-destroying fungi and moulds, and effect on wood discoloration. Bioresources 9(3): 5588-5603. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/5577

Rezaie, R.; Farhoosh, R.; Sharif, A.; Asili, J.; Iranshahi, M. 2015. Chemical composition, antioxidant and antibacterial properties of Bene (Pistacia atlantica subsp. mutica) hull essential oil. J Food Sci Technol 52(10): 6784–6790. https://doi.org/10.1007/s13197-015-1789-0

Sailer, M.; Rapp, A.O.; Leithoff, H. 2000. Improved resistance of Scots pine and spruce by application of an oil-heat treatment. In: The International Research Group on Wood Preservation. IRG/WP 00-40162, Kona, Hawaii, USA.

Salem, N.Z.M.; Zidan, Y.E.; Mansour, M.M.A.; El Hadidi, N.M.N.; Abo Elgat, W.A.A. 2016. Antifungal activities of two essential oils used in the treatment of three commercial wood deteriorated by five common mold fungi. Int Biodeter Biodegr 106: 88-96. https://doi.org/10.1016/j.ibiod.2015.10.010

Salimi, S.; Shafaghat, A.; Sahebalzamani, H.; Alizadeh, M.M.; Rech, F. 2011. α-Pinene from Pistacia atlantica Desf. Subsp. Kurdica (Zohary). Rech F Der Chemica Sinica 2(3): 1-3. http://www.pelagiaresearchlibrary.com/der-chemica-sinica/vol2-iss3/DCS-2011-2-3-1-3.pdf

Shialy, Z.;Zarrin, M.; Sadeghi Nejad, M.; Yusef Naanaie, S. 2015. In vitro antifungal properties of Pistacia atlantica and olive extracts on different fungal species. Curr Med Mycol 1(4): 40–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490281/

Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Ait Ben Aoumar, A. 2012. Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. J Crop Prot 35: 41-46 https://doi.org/10.1016/j.cropro.2011.12.016

Thybring, E.E. 2013. The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. Int Biodeter Biodegr 82: 87-95. https://doi.org/10.1016/j.ibiod.2013.02.004

Waals, J.W.; Chittenden, C.; Kreber, B. 2003. Effect of bioextracts on colonization of radiata pine sapwood by three sapstain fungi. In: The International Research Group on Wood Preservation, IRG/WP 03-10485, Brisbane, Queensland, Australia.

Xie, Y.; Wang, Z.; Huang, Q.; Zhang, D. 2017. Antifungal activity of several essential oils and major components against wood-rot fungi. Ind Crops Prod 108: 278-285. https://doi.org/10.1016/j.indcrop.2017.06.041

Zhang, Z.; Yang, T.; Mi, N.; Wang, Y.; li, G.; Wang, L.; Xie, Y. 2016. Antifungal activity of monoterpenes against wood white-rot fungi. Int Biodeter Biodegr 106: 157-160. https://doi.org/10.1016/j.ibiod.2015.10.018
Published
2020-10-01
How to Cite
Mahmoud Kia, M., Tarmian, A., Naghi Karimi, A., Gholamiyan, H., Abdulkhani, A., & Reza Mastri Farahani, M. (2020). The efficiency of Pistacia atlantica gum for increasing resistance of rapeseed oil-heat treated wood to fungal attacks. Maderas-Cienc Tecnol, 22(4). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/4139
Section
Article

Most read articles by the same author(s)