Uptake of insecticides and fungicides by impregnable and refractory coniferous wood species treated with commercial bio-based emulsion gel formulations

  • Daouïa Messaoudi
  • Katia Ruel
  • Jean- Paul Joseleau
Keywords: Emulsion gels formulations, fungicides, impregnation, insecticides, Picea abies, Pinus sylvestris, wood microstructure, wood preservatives

Abstract

Even in dry state, wood can be prone to biological degradation. Preservation is a prerequisite to confer protection and durability to wood. This is conventionally achieved by impregnating the wood with pesticides. A key point in these treatments is the complex process of wood penetrability. We focused on the relation between the penetration of wood preservatives, wood microstructure, and the physical characteristics of formulations in the impregnation of the easily impregnable pine (Pinus sylvestris), and the refractory spruce (Picea abies). In this work, specimens from the two species were impregnated with three types of commercial bio-based emulsion gels formulations containing insecticides and fungicides. The effect of treatment method using dipping, surface spraying, and vacuum-impregnation, on the retention of the active agents was analyzed. Visual assessment, and qualitative and quantitative analyses of cypermethrin, permethrin and  propiconazole by gas liquid chromatography coupled to mass spectroscopy showed enhanced penetration of the active agents, and revealed differences of penetration performance of each agent. The suitable combinations of solvents and surfactants used in the bio-based formulations enabled rapid wood penetration and high yields retention. The capacity of penetration and retention of our gel formulations is discussed in terms of the connectivity of the conducting cells network of the two wood species.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials. 2020. ASTM D6866: Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis. ASTM. West Conshohocken, PA, USA. http://www.astm.org/cgi-bin/resolver.cgi?D6866-20.

Baines, E.F.; Saur, J. 1985. Preservative treatment of spruce and other refractory species.
In Annu Proc Am Wood Preserv Assoc. 1985. Granbury, TX, USA. American Wood-Preservers’Association. 81: 136-147.

Booker, R.E.; Evans, J.M. 1994. The effect of drying schedule on the radial permeability of Pinus radiata D. Don. Holz Roh Werkstoff 52: 150–156. https://doi.org/10.1007/BF02615211.

Candau F. 1990. An introduction to polymer colloids. In Scientific methods for the study of polymer colloids and their applications. F., Candau.; R.H., Ottewill (eds). Kluwer Academic Publishers. p. 73.

Civardi, C.; Schwarze F.W.M.R.; Wick, P. 2015. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environ Pollut 200: 126-132. https://doi.org/10.1016/j.envpol.2015.02.018.

Civardi, C.; Van den Bulcke, J.; Schubert, E.; Michel, M.; Butron, M.I.; Boone, M.N.; Dierick, M.; Van Acker, J.; Wick, P.; Schwarze, F.W.M.R. 2016. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species. PLoS One 11(9): e0163124. https://doi.org/10.1371/journal.pone.0163124.

Comstock, G.A.; Côté Jr, W.A. 1968. Factors affecting permeability and pit aspiration in coniferous sapwood. Wood Sci Technol 2: 279-291. https://doi.org/10.1007/BF00350274.

Du, X.; Lucia, L.A.; Ghiladi, R.A. 2016. A novel approach for rapid preparation of monophasic microemulsions that facilitates penetration of woody biomass. ACS Sustain Chem Eng 4(3): 1665–1672. https://doi.org/10.1021/acssuschemeng.5b01601.

European Standards. 2016. EN 350: Durability of wood and wood-based products – Testing and classification of the durability to biological agents of wood and wood-based materials. CEN, Brussels, Belgium. https://www.cen.eu/Pages/default.aspx.

European Standards. 2017. EN 16640-X85-002: Bio-based products – Determination of the bio-based carbon content of products using the radiocarbon method. CEN, Brussels, Belgium https://www.boutique.afnor.org/norms.

Evans, P. 2003. Emerging technologies in wood protection. Forest Prod J 53(1): 14-22. https://search.proquest.com/docview/214641686?pq-origsite=gscholar&fromopenview=true

Flynn, K.A. 1995. A review of the permeability, fluid-flow, and anatomy of spruce (Picea spp.). Wood Fiber Sci 27(3): 278–284. https://wfs.swst.org/index.php/wfs/article/view/1659.

Garcia-Esteban, L.; De Palacios, P. 2009. Comparative wood anatomy in Abietoideae (Pinaceae). Bot J Linn Soc 160: 184–196. https://doi.org/10.1111/j.1095-8339.2009.00971.x.

Griggs, J.L.; Rogers, K.R.; Nelson, C.; Luxton, T.; Platten, W.E.; Bradham, K.D. 2017. In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood. Sci Total Environ 598: 413-420. https://doi.org/10.1016/j.scitotenv.2017.03.227.

Guide to solubility. 2016. PEX SamplePrep Metuchen, NJ, USA. https://www.spexcertiprep.com/knowledge-base/files/Guide-to-Pesticide-Solubility.pdf.

Haller, K.K.; Ventikos.; Poulikakos, D. 2002. Computational study of high-speed liquid droplet impact. J Appl Phys 92: 2821 https://doi.org/10.1063/1.1495533.

Hass, P.; Wittel, F.K.; Stampanoni, M.; Kastner, A.; Mannes, D.; Niemz, P. 2009. 3D characterization of adhesive penetration into wood by Means of synchrotron radiation. In Proceedings of the International Conference on Wood Adhesives. September 28-30, 2009. Lake Tahoe, Nevada, USA. (Editors: Frihart, C.R.; Hunt, C.G.; Moon, R.J.). Forest Products Society, Madison, WI, USA. pp 348-352.

Johansson, D.; Sehlstedt-Persson, M. 2006. Effect of heat treatment on capillary water absorption of heat-treated pine, spruce and birch. In Wood structure and properties '06: [Proceedings of the 5th IUFRO Symposium Wood Structure and Properties '06 September 3-6, 2006, Sliač - Sielnica, Slovakia. Lagana, R.; Kurjatko, S.; Kudela, J. (Eds.). Arbora Publishers, Zvolen, Slovakia. pp 251-255.

Kang, S-M.; Morrell, J.J.; Simonsen, J.; Lebow, S. 2005. Creosote movement from treated wood immersed in fresh water. Forest Prod J 55(12): 42-46. https://www.fs.usda.gov/treesearch/pubs/27107.

Konopka, A.; Barański, J.; Orłowski, K.; Szymanowski, K. 2018. The effect of full-cell impregnation of pine wood (Pinus sylvestris L.) on changes in electrical resistance and on the accuracy of moisture content measurement using resistance meter. BioResources 13(1): 1360-1371. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_1_1360_Konopka_Full_Cell_Impregnation_Pine_Wood.

Koran, Z. 1989. Anatomy and treatability of spruce wood. In Proceedings 1988 Forintek wood preservation seminar, November 4, 1988, Vancouver, Canada. pp 23 – 41.

Lehringer, C.; Richter, K.; Schwarze, F.W.M.R.; Militz, H. 2009a. A review on promising approaches for liquid permeability improvement in softwoods. Wood Fiber Sci 41(4):373-385. https://wfs.swst.org/index.php/wfs/article/view/683.

Lehringer, C.; Arnold, M.; Richter, K.; Schubert, M.; Schwarze, F.W.M.R.; Militz, H. 2009b. Bioincised wood as substrate for surface modifications. In The fourth European conference on wood modification. Englund, F.; Hill, C.A.S.; Militz, H.; Segerholm B.K. (Eds.), SP Technical Research Institute of Sweden, Stockholm, Sweden. pp. 197-200.

Matsunaga, H.; Kiguchi, M.; Evans, P.D. 2009. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood. J Nanopart Res 11: 1087-1098. https://doi.org/10.1007/s11051-008-9512-y.

Messaoudi, D.; Jame, P.; Oberlin, C. 2018. Développement de solutions biosourcées innovantes pour la durabilité conférée des matériaux face aux agents biologiques. In FIBRA Innovation Congrès International de la Construction Biosourcée – Halle Pajol - Paris 18 - France- 3,4 October. Fibra international BioBuild Concept Matériaux Construction Biosourcés.

Mohamad Shahimin M.F.; Siddique T. 2017. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings. Sci Total Environ 583: 115-122. https://doi.org/10.1016/j.scitotenv.2017.01.038.

Norme Française. NF. 2017. EN NF 14370: Agents de surface – détermination de la tension superficielle. AFNOR normalization Editions, France.
https://www.boutique.afnor.org/norme/nf-en-14370.

Nyrén, V.; Back, E. 1960. Characteristics of parenchymateous cells and tracheidal ray cells in Picea abies Karst. Svensk Papperstidning 63(16):501-509.

Obounou Akong, F.; Gérardin, P.; Thévenon, M-F.; Gérardin-Charbonnier, C. 2013. State of progress of utilization of supramolecular gels for formulations of water-soluble wood preservation salts. In Proceedings in the International Research Group on Wood Protection IRG, Annual Meeting Stockholm 2013 IRG/WP 13-30630.

Olsson, T.; Megnis, M.; Varna, J.; Lindberg, H. 2001. Study of the transverse liquid flow paths in pine and spruce using scanning electron microscopy. J Wood Sci 47(4): 282-288. https://doi.org/10.1007/BF00766714.

Pànek, M.; Reinprecht, L. 2011. Bacillus subtilis for improving spruce wood impregnability BioResources 6(3): 2912-2931. https://doi.org./10.15376/biores.6.3.2912-2931.

Rhatigan, R.; Freitag, C.; El-Kasmi, S.; Morrell, J.J. 2004. Preservative treatment of Scots pine and Norway spruce. Forest Prod J 54(10): 91-94.
https://search.proquest.com/docview/214627166?pq-origsite=gscholar&fromopenview=true

Richardson, B.A. 1993. Wood Preservation. Second edition E & FN SPON, Chapman & Hall London, 26 Boundary Row, London.

Ruel, K.; Tapin-Lingua, S.; Messaoudi, D.; Fahy, O.; Jequel, M.; Petit-Conil, M.; Joseleau, J-P. 2015. Probing biocide penetration and retention in wood products by immulabeling techniques. In Proceedings Wood Science and engineering in the third millennium, International Conference10th edition. November 5-7, ICWSE 2015. Gurau, L.; Campean, M.; Ispas, M. (Eds.). Transilvania University, Brasov, Romania.

Sano, Y. 2016. Bordered Pit Structure and Cavitation Resistance in Woody Plants. In Secondary Xylem Biology, Origins, Functions, and Applications. Chapter 7: 113-130. https://doi.org/10.1016/B978-0-12-802185-9.00007-3.

Sarpap SA. 1995. Brevet FR 2740659. Composition de préservation pour les bois et son utilisation. SARPAP SA – Marais Ouest, 24680, Gardonne, France.

Siau, J.F. 1984. Transport processes in wood. Springer Verlag, Berlin. 243 p.

Sint, K.M.; Militz, H.; Hapla, F.; Adamopoulos S. 2011. Treatability and penetration indices of four lesser used myanmar hardwoods. Wood Res-Slovakia 5: 13-22. http://www.woodresearch.sk/wr/201101/02.pdf.

Taylor, F.W.; Moore, J.S. 1981. A comparison of earlywood and latewood tracheid length in Loblolly pine. Wood Fiber Sci 13(3): 159-165. https://wfs.swst.org/index.php/wfs/article/view/1995.

Teng, T-J.; Mat Arip, M.N.; Kumar, S.; Nemoikina, A.; Jalaludin, Z.; Ng, E-P.; Lee, H-L. 2018. Conventional Technology and Nanotechnology in Wood Preservation: A Review. BioResources 13(4): 9220-9252. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_4_Teng_Review_Conventional_Technology_Nanotech_Wood.

Tripathi, S.; Poonia, P.K. 2015. Treatability of Melia composita using vacuum pressure impregnation. Maderas-Cienc Tecnol 17(2): 373-384. http://dx.doi.org/10.4067/S0718-221X2015005000035.

Ulvcrona, T. 2006. Impregnation of Norway spruce (Picea abies L. Karst.) wood with hydrophobic oil. Ph.D. Thesis, Swedish University, Umea, Sweden. https://pub.epsilon.slu.se/1214/.

Usta, I. 2005. A review of the configuration of bordered pits to stimulate the fluid flow. Maderas-Cienc Tecnol 7(2): 121–132. http://dx.doi.org/10.4067/S0718-221X2005000200006.

Usta, I.; Hale, M.D. 2003. Radial permeability of Sitka spruce as affected by wood structure: Permeability of cross-field pits in unideriate rays. IAWA J 24(2): 197-204. https://doi.org/10.1163/22941932-90000332.

Vinden, P.; Romero, J.; Torgovnikov, G. 2003. A method for increasing the permeability of wood. US patent 6: 596-975. Application Number: 09/719294 https://patents.google.com/patent/US6596975B1/en.

Wardrop, A.B.; Davies, G.W. 1961. Morphological factors relating to the penetration of liquids into wood. Holzforschung 15(5): 129-141. https://doi.org/10.1515/hfsg.1961.15.5.129.

Yin, J.; Song, K.; Lu, Y.; Zhao, G.; Yin, Y. 2015. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Sci Technol 49: 987–1001. https://doi.org/10.1007/s00226-015-0741-9.

Yorur, H.; Kayahan, K. 2018. Improving impregnation and penetration properties of refractory woods through cryonic treatment. BioResources 13(1): 1829-1842. https://doi.org/10.15376/biores.13.1.1829-1842.

Zlahtic, M.; Mikac, U.; Sersa, I.; Merela, M.; Humar, M. 2017. Distribution and penetration of tung oil in wood studied by magnetic resonance microscopy. Ind Crop Prod 96 149–157. http://dx.doi.org/10.1016/j.indcrop.2016.11.049.

Zhang, Y.L.; Zhang, S.Y.; Dian, Q.Y.; Wan, H. 2006. Dimensional stability of wood polymer composites. J Appl Polym Sci 102(6): 5085- 5094. https://doi.org/10.1002/app.23581.
Published
2020-10-01
How to Cite
Messaoudi, D., Ruel, K., & Paul Joseleau, J.-. (2020). Uptake of insecticides and fungicides by impregnable and refractory coniferous wood species treated with commercial bio-based emulsion gel formulations. Maderas-Cienc Tecnol, 22(4). Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/4184
Section
Article