Properties of biomass obtained from short-rotation inger willow clone grown on a contaminated and non-contaminated land


  • Cezar Scriba
  • Emilia-Adela Salca
  • Valentina Doina Ciobanu


Biomass, calorific power, contaminated land, INGER clone, short-rotation coppice


The paper aims to analyze the biomass at one year growth, resulting from the cultivation of the INGER energy willow clone as a short rotation crop (SRC), in order to use it as a renewable fuel. The paper completes the data in the field of renewable energies in the context of decreasing fossil energy reserves worldwide and emphasizing the impact on renewable energies. The effect of a contaminated land on the survival rate of the planted seedlings and the effect of the energy willow culture on the composition of the contaminated soil are analyzed. The obtained results show that the biomass characteristics, such as the calorific power of about 18,21 kJ/g to18,90 kJ/g, and the ash content of about 2,25 %, are comparable with the ones of other lignocellulosic energy materials. The results found in this studyshowed that the woody biomass in the first vegetation year of energy willow can be used directly as a renewable fuel without the need for compaction in the form of briquettes or pellets.


Download data is not yet available.


Adler, A.; Verwijst, T.; Aronsson, P. 2005. Estimation and relevance of bark proportion in a willow stand. Biomass Bioenerg 29(2): 102-113.

AEBIOM–European Biomass Association. 2011. Annual Statistical Report on the contribution of Biomass to the Energy System in the EU27. AEBIOM. Brussels, Belgium.

Albertsson, J.; Verwijst, T.; Hansson, D.; Bertholdsson, N-O.; Åhman, I. 2014. Effects of competition between short-rotation willow and weeds on performance of different clones and associated weed flora during the first harvesting cycle. Biomass Bioenerg 70: 364-372.

American Society for Testing and Materials. 2011. D2866–11: Standard Test Method for Total Ash Content of Activated Carbon, ASTM International, West Conshohocken, PA, USA.

Amichev, B.Z.; Hangs, R.D.; Van Ress, K.C.J. 2011. A novel approach to simulate the growth of multi-stem willow in bioenergy production systems with a simple process-bassed model (3PG). Biomass Bioenerg 35: 473-488.

Arevalo, C.B.M.; Volk, T.A.; Bevilacqua, E.; Abrahamson, L. 2007. Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass Bioenerg 31: 1-12.

Argus, G.W. 1997. Infrageneric classification of Salix (Salicaceae) in the New World. Syst Bot 52: 1–121.

Borkowska, H.; Molas, R. 2013. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenerg 51: 145-153.

Botu, I.; Botu, M.; Preda, S.; Achim, Gh.; Lazar, A.; Alecu, A. 2013. Comparative evaluation of Romanian and introduced Salix cultivars for short rotation coppice. South West J Hortic Biol Environ 4(1): 35-42.

Börjesson, P.; Berndes, G. 2006. The prospects for willow plantation for waste water treatment in Sweden. Biomass Bioenerg 30: 428-438.

Buchholz, T.; Volk, T.A. 2011. Improving the profitability of willow crops-identifying opportunities with a crop budget model. Bioenerg Res 4: 85-95.

DIN. 2000. 51900-1: Determining the gross calorific value of solid and liquid fuels using the bomb calorimeter, and calculation of net calorific value – Part 1: General information, Deutsches Institute fur Normung, Germany.

Dimitrious, I.; Rosenqvist, H.; Berndes, G. 2011. Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass Bioenerg 35: 4613-4618.

El Kasmioui, O.; Ceulemans, R. 2013. Financial analysis of the cultivation of short rotation woody crops for bioenergy in Belgium: Barriers and opportunities. Bioenerg Res 6: 336-350.

Energetic Willow. 2008. SC Kontrastwegwege SRL, Romania.

Ens, J.; Farrell, R.; Bélanger, N. 2013. Early effects of afforestation with willow (Salixpurpurea, “Hotel”) on soil carbon and nutrient availability. Forests 4: 137 - 154.

Ericsson, K.; Nilsson, L.J. 2006. Assessment of the potential biomass supplyin Europe using a resource-focused approach. Biomass Bioenerg 30: 1–15.

Ericsson, K.; Rosenqvist, H.; Ganko, E.; Pisarek, M.; Nilsson, L. 2006. An agroeconomic analysis of willow cultivation in Poland. Biomass Bioenerg 30: 16-27.

Faasch, R.J.; Patenaude, G. 2012. The economics of short rotation coppice in Germany. Biomass Bioenerg 45: 27-40.

Fiala, M.; Bacenetti, J. 2012. Economic, energetic and environmental impact in short rotation coppice harvesting operations. Biomass Bioenerg 42: 107-113.

Fischer, G.; Prieler, S.; van Velthuizen, H. 2005. Biomass potentials of miscanthus, willow and poplar: results and policy implication for Eastern Europe, Northern and Central Asia. Biomass Bioenerg 28: 119-132.

Francescato, V.; Antonin, E.; Bergomi, L.Z. 2008. Wood fuels handbook. Editura House AIEL – Italian Agriforestry Energy Association, Italy.

Ghaley, B.B.; Porter, J.R. 2014. Determination of biomass accumulation in mixed belts of Salix, Corylus and Alnus species in combined food and energy production system. Biomass Bioenerg 63: 86-91.

Griu, T.; Lunguleasa, A. 2016. Salix viminalis vs Fagus sylvatica – fight for renewable energy from woody biomass in Romania. Environ Eng Manag J 15(2): 413-420.

Griu Dobrev, T.B. 2014. Evaluation of the calorific power of wooden biomass. PhD thesis. Transilvania University of Braşov, Brasov, Romania.

Guilherme, G.; Carlos, R.A.; Ananias, F.D.J.; Francides, G.S.J.; José, O.B. 2016. Timber wastes torrefaction for energy use. Maderas-Cienc Tecnol 18(1): 105-112.

Guidi, W.; Piccioni, E.; Ginanni, M.; Bonari, E. 2008. Bark content estimation in poplar (Populus deltoides L.) short-rotation coppice in Central Italy. Biomass Bioenerg 32: 518-524.

Hammar, T.; Ericsson, N.; Sundberg, C.; Hannson, P.A. 2014. Climate impact of willow grown for energy in Sweden. Bioenerg Res 7: 1529 - 1540.

Hangs, R.D.; Van Rees, K.C.J.; Shoenau, J.J.; Guo, X. 2011. A simple technique for estimating above-ground biomass in short-rotation plantations. Biomass Bioenerg 35: 2156-2162.

Helby, P.; Rosenqvist, H.; Roos, A. 2006. Retreat from Salix – Swedish experience with energy crops in the 1990s. Biomass Bioenerg 30: 422-427.

Holm, B.; Heinsoo, K. 2013. Municipal wastewater application to Short Rotation Coppice of willows – Treatment efficiency and clone response in Estonian case study. Biomass Bioenerg 57: 126-135.

Jezowski, S.; Glowacka, K.; Kaczmarek, Z.; Szuczukowski, S. 2011.Yield traits of eight common osier clones in the first three years following planting in Poland. Biomass Bioenerg 35: 1205-1210.

Karp, A.; Hanley, S.; Trybush, S.; Macalpine, W.; Pei, M.; Shield, I. 2011. Genetic Improvement of Willow for Bioenergy and Biofuels. J Integr Plant Biol 53(2): 151 - 165.

Krigstin, S.G.; Wong, B.M.; Roy, D.N. 1993.The contribution of chemical components in juvenile hybrid Salix spp. to its total energy output. Wood Sci Technol 27: 309-320.

Labrecque, M.; Teodorescu, T.I. 2005. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenerg 29: 1-9.

Larsen, S.U.; Jørgensen, U.; Lærke, P.E. 2014. Willow yield is highly dependent on clone and site. Bioenergy Res 7: 1280-1292.

Manzone, M.; Balsari, P. 2014. Planters performance during a Very Short Rotation Coppice planting. Biomass Bioenerg 67: 188-192.

Mitsui, Y.; Seto, S.; Nishio, M.; Minato, K.; Ishizawa, K.; Satoh, S. 2010. Willow clones with high biomass yield in short rotation coppice in the southern region of Tohoku district (Japan). Biomass Bioenerg 34: 467-473.

Mleczek, M.; Rutowski, P.; Rissman, I.; Kaczmarek, Z.; Golinski, P.; Szentner, K.; Strazynska, K.; Stachowiak, A. 2010. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenerg 34: 1410-1418.

Rytter, R.M. 2012.The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass Bioenerg 36: 86-95.

Scriba, C. 2017. Research on plantation, harvest and capitalization of some energy willow clones. PhD thesis, Transilvania University of Brasov, Brasov, Romania.

Sevel, L.; Nord-Larsen, T.; Raulund-Rasmussen, H. 2012.Biomass production off our willow clones grown as short rotation coppice on two soil types in Denmark. Biomass Bioenerg 46: 664-672.

Smaliukas, D.; Noreika, R.; Puida, E. 2008.Evaluation of morphological biomass and energetic characteristics of Salix viminalis L. and S. dasyclados Wimm. Biologija 54(2): 97–100.

Spirchez, C.; Lunguleasa, A.; Matei, M. 2018. Particularities of hollow-core briquettes obtained out of spruce and oak wooden waste. Maderas-Cienc Tecnol 20(1):139-152.

Stolarski, M.; Szczukowski, S.; Tworkowski, J.; Klasa, A. 2008.Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenerg 32: 1227-1234.

Szczukowski, S.; Tworkowski, J.; Klasa, A.; Stolarski, M. 2002. Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostlinna Vyroba 48: 413–417.

Turinawe, H.; Mugabi, P.; Tweheyo, M. 2014. Density, Calorific Value and Cleavage Strength of Selected Hybrid Eucalypts Grown in Uganda. Maderas-Cienc Tecnol 16(1): 13-24.

Volk, T.A.; Verwijst, T.; Tharakan, P.J.; Abrahamson, L.P.; White, E.H. 2004. Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ 2: 411–418.[0411:GFASAO]2.0.CO;2

Wang, Z.; MacFarlane, D.W. 2012. Evaluating the biomass production of coppiced willow and polar clones in Michigan, USA, over multiple rotations and different growing conditions. Biomass Bioenerg 46: 380-388.

Wilkinson, J.M.; Evans, E.J.; Bilsborrow, P.E.; Wright, C.; Wewison, W.O.; Pilbeam, D.J. 2007. Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenerg 31: 469-474.




How to Cite

Scriba, C. ., Salca, E.-A. ., & Doina Ciobanu, V. . (2021). Properties of biomass obtained from short-rotation inger willow clone grown on a contaminated and non-contaminated land. Maderas-Cienc Tecnol, 23, 1–12. Retrieved from