Effects of microcrystalline cellulose on some performance properties of chitosan aerogels


  • Ertan Ozen
  • Nadir Yildirim
  • Berk Dalkilic
  • Mehmet E. Ergun


Aerogels, bio-based, compressive resistance, chitosan, microcrystalline cellulose, thermogravimetric analysis, scanning electron microscope


The aim of this research was to investigate the effect of the microcrystalline cellulose reinforcement on some physical, mechanical, thermal, and morphological properties of the chitosan aerogels. The bio-based chitosan aerogels were produced using chitosan as a matrix and the microcrystalline cellulose as a reinforce material through freeze-drying method. The aerogel suspensions were prepared in five different ratios to investigate the effect of microcrystalline cellulose content. The density, porosity, thermogravimetric analysis, and compressive resistance tests were conducted according to relevant standards. Morphological properties were investigated using scanning electron microscope. The introduction of microcrystalline cellulose significantly improved the compressive resistance, thermal properties (Tonset and T%50) of the chitosan aerogels. The optimum performance properties determined as 0,12 MPa for compressive resistance, 0,27 MPa for compressive modulus, 292,45 °C for Tonset and 365 °C for T%50. According to scanning electron microscope images, aerogels showed microporous structure as expected. As a result, the bio-based chitosan aerogels reinforced with microcrystalline cellulose were successfully manufactured. The mechanical and thermal properties including compressive resistance, compressive modulus, Tonset and T%50 of chitosan- microcrystalline cellulose aerogels found promising.


Download data is not yet available.


Abdullah, M.; Nazir, M.; Raza, M.; Wahjoedi, B.; Yussof, A. 2016. Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J Clean Prod 126: 686-697. https://doi.org/10.1016/j.jclepro.2016.03.107

Adel, A.; Abd. El-Wahab Z.; Ibrahim, A.; Al-Shemy, M. 2011. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydr Polym 83(2): 676-687. https://doi.org/10.1016/j.carbpol.2010.08.039

Ali, Z.M.; Gibson, L.J. 2013. The structure and mechanics of nanofibrillar cellulose foams. Soft Matter 9(5): 1580–1588. https://doi.org/10.1039/C2SM27197D

Altuntas, E.; Aydemir, D. 2019. Effects of wood flour on the mechanical, thermal and morphological properties of poly (L-lactic acid)-chitosan biopolymer composites.

Maderas-Cienc Tecnol 21(4): 611 – 618. http://dx.doi.org/10.4067/S0718-221X2019005000416

American Society for Testing and Materials. ASTM. 2016. C303-10e1: Standard Test Method for Dimensions and Density of Preformed Block and Board–Type Thermal Insulation. ASTM International. West Conshohocken, PA, USA. https://doi.org/10.1520/C0303-10R16E01

American Society for Testing and Materials. ASTM. 2017. C165-07: Standard Test Method for Measuring Compressive Properties of Thermal Insulations. ASTM International. West Conshohocken, PA, USA. https://doi.org/10.1520/C0165-07R17

Bhandari, J.; Mishra, H.; Mishra, P.; Wimmer, R.; Ahmad, F.; Talegaonkar, S. 2017. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int J Nanomedicine 12: 2021-2031. https://doi.org/10.2147/IJN.S124318

Chen, J.; Wang, X.; Long, Z.; Wang, S.; Zhang, J.; Wang, L. 2020. Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. Int J Biol Macromol 165: 2295-2302. https://doi.org/10.1016/j.ijbiomac.2020.10.117

Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M. 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1): 1-12. https://doi.org/10.1021/bm060620d

Demitri, C.; Giuri, A.; Raucci, M.G.; Giugliano, D.; Madaghiele, M.; Sannino, A.; Ambrosio, L. 2014. Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus 4(1): 20130053. https://doi.org/10.1098/rsfs.2013.0053

El-Sakhawy, M.; Hassan, M. 2007. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67(1): 1-10. https://doi.org/10.1016/j.carbpol.2006.04.009

Gibson, L.J.; Ashby, M.F. 1997. Cellular Solids; Structure and Properties. Cambridge University Press, Cambridge, United Kingdom. https://doi.org/10.1017/CBO9781139878326

Gomes, L.; Paschoalin, V.M.F.; Del Aquila, E.M. 2017. Chitosan nanoparticles: Production, physicochemical characteristics and nutraceutical applications. Rev Virtual Quim 9(1): 387–409. https://doi.org/10.3390/molecules24010127

Henriksson, M.; Henriksson, G.; Berglund L.; Lindström, T. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8): 3434-3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038

Katakojwala, R.; Mohan, S. 2020. Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment. J Clean Prod 249: 119342. https://doi.org/10.1016/j.jclepro.2019.119342

Kim, J.; Cai Z.; Lee, H.S.; Choi, G.S.; Lee, D.H.; Jo, C. 2011. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18(4): 739-744. https://doi.org/10.1007/s10965-010-9470-9

Lim, B.; Poh, C.; Voon, C.; Salmah, H. 2015. Rheological and thermal study of chitosan filled thermoplastic elastomer composites. Appl Mech Mater 754-755: 34-38. https://doi.org/10.4028/www.scientific.net/AMM.754-755.34

Liu, Y.; Lu, P.; Xiao, H.; Heydarifard, S.; Wang, S. 2017. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams. Cellulose 24: 241–251. https://doi.org/10.1007/s10570-016-1103-y

Mathias, J.D.; Nicolas, T.D; Michaud, P. 2011. Development of a chitosan-based biofoam: application to the processing of a porous ceramic material. Int J Mol Sci 12(2): 1175-1186. https://doi.org/10.3390/ijms12021175

Mishra, P.; Ekielski, A.; Mukherjee, S.; Sahu, S.; Chowdhury, S.; Mishra, M.; Talegaonkar, S.; Siddiqui, L.; Mishra, H. 2019. Wood-based cellulose nanofibrils: haemocompatibility and impact on the development and behaviour of drosophila melanogaster. Biomolecules 9(8): 363. https://doi.org/10.3390/biom9080363

Mishra, P.; Gregor, T.; Wimmer, R. (2017). Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. BioResources 12(1): 107-116. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_1_107_Mishra_Brewer_Spent_Grain_Cellulose/5545

Olorunsola, E.O.; Akpan, G.A.; Adikwu, M.U. 2017. Evaluation of chitosan-microcrystalline cellulose blends as direct compression excipients. J Drug Deliv 2017: 8563858. https://doi.org/10.1155/2017/8563858

Petersson, L.; Kvien, I.; Oksman, K. 2007. Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67(11-12): 2535-2544. https://doi.org/10.1016/j.compscitech.2006.12.012

Sehaqui, H.; Zhou, Q.; Berglund, L.A. 2011. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13): 1593–1599. https://doi.org/10.1016/j.compscitech.2011.07.003

Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. 2018. Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5(3): 375-386. https://doi.org/10.1007/s40572-018-0206-z

Stefanescu, C.; Daly, W.H.; Negulescu, I.I. 2012. Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr Polym 87(1): 435–443. https://doi.org/10.1016/j.carbpol.2011.08.003

Sundarraj, A.A; Ranganathan, T.V. 2018. Comprehensive review on cellulose and microcrystalline cellulose from agro-industrial wastes. Drug Invention Today 10(1): 2783-2788. https://jprsolutions.info/article_detail.php?article_id=2739

Svagan, A.; Samir, M.; Berglund, L. 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20(7): 1263 – 1269. https://doi.org/10.1002/adma.200701215

Trache, D.; Hussin, M.; Hui C.C.; Sabar, S.; Fazita, M.; Taiwo, O.; Hassan, T.; Haafiz, M. 2016. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93: 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

Wang, Y.; Uetani, K.; Liu, S.; Zhang, X.; Wang, Y.; Lu, P.; Wei, T.; Fan, Z.; et al. 2017. Multi-functional bionanocomposite foams using a chitosan matrix reinforced by nanofibrillated cellulose. ChemNanoMat 3(2): 98-108. https://doi.org/10.1002/cnma.201700010

Yildirim, N.; Shaler, S.M.; Gardner, D.J.; Rice, R.; Bousfield, D.W. 2014. Cellulose nanolif (CNF) reinforced starch insulating foams. Cellulose 21: 4337–4347. https://doi.org/10.1007/s10570-014-0450-9




How to Cite

Ozen, E. ., Yildirim, N. ., Dalkilic, B. ., & E. Ergun, M. . (2021). Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas-Cienc Tecnol, 23. Retrieved from http://revistas.ubiobio.cl/index.php/MCT/article/view/4590