Influence of initial wood moisture on decay process by two brown- rot fungi

Authors

  • Valentina Benítez
  • Jorge Franco
  • Álvaro Camargo
  • Pablo Raimonda
  • Carlos Mantero
  • Claudia Ibáñez

Keywords:

Brown rot, Eucalyptus grandis, moisture content, weight loss, wood biodegradation

Abstract

The biological decomposition of lignocellulosic materials caused by basidiomycetes plays an essential role in the carbon cycle. Brown rot fungi represent important agents in biodegradation of wood products and standing coniferous trees in natural ecosystems. The initial moisture content of the wood is an important factor in the degradation process. In this work, the effects of initial moisture content of Eucalyptus grandis sapwood on decay by two brown rot fungi Gloeophyllum trabeum and Laetiporus sulphureus were studied over a 10-month period. Fungal activity was evaluated, through wood weight loss, moisture content, anatomical changes (scan electronic and fluorescence microscopy) and Fourier-transform infrared spectroscopy. Weight loss increased through the 10-month test for both fungi, Laetiporus sulphureus producing higher mass losses. Colonization of the wood by both fungi started below the fiber saturation range. It was observed that the initial moisture content of the wood influenced the rate of deterioration: the wet samples showed higher weight loss compared to the dry samples. Changes in the chemical composition and structure of cell walls were detected. The initial moisture content of the substrate affected the development of the fungi, slowing their growth.

Downloads

Download data is not yet available.

References

Ammer, V.U. 1963. Untersuchungen fiber das Wachstum von Rotstreifepilzen in Abhängigkeit von der Holzfeuchtigkeit. Forstwiss Centralbl 82: 360–391. https://doi.org/10.1007/BF02202726

Berben, S.A.; Rademacher, J.P.; Sell, L.O.; Easty, D.B. 1987. Determination of lignin in wood pulp by diffuse reflectance Fourier transform infrared spectrometry transform infrared spectrometry. IPC Techical Paper Series 210. 15p. https://smartech.gatech.edu/bitstream/handle/1853/2513/tps-210.pdf

Blanchette, R.S. 1995. Degradation of the lignocellulose complex in wood. Can J Bot 73: 999–1010. https://doi.org/10.1139/b95-350

Bond, J.; Donaldson, L.; Hill, S.; Hitchcock, K. 2008. Safranine fluorescent staining of wood cell walls. Biotech Histochem 83: 161–171. https://doi.org/10.1080/10520290802373354

Brischke, C.; Soetbeer, A.; Meyer-Veltrup, L. 2017. The minimum moisture threshold for wood decay by basidiomycetes revisited. A review and modified pile experiments with Norway spruce and European beech decayed by Coniophora puteana and Trametes versicolor. Holzforschung 71: 893– 903. https://doi.org/10.1515/hf-2017-0051

De Ligne, L.; Ulzurrun, G.V.D.; Baetens, J.M.; Bulcke, J.V.; Acker, J.V.; De Baets, B. 2019. Analysis of spatio- temporal fungal growth dynamics under different environmental conditions. IMA Fungus 1: 1–14. https://doi.org/10.1186/s43008-019-0009-3

Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. 2018. InfoStat versión 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

European Committee for Standardization. CEN. 1996. EN 113: Wood preservatives-method 339 of test for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values. Brussels, Belgium.

Eriksson, K.; Blanchette, R.; Ander, P. 1990. Microbial and enzymatic degradation of wood and wood components. Springer Berlin Heidelberg. https://10.1007/978-3-642-46687-8

Faix, O. 1992. Methods in Lignin Chemistry. Springer Series in Wood Science. https://link.springer.com/book/10.1007%2F978-3-642-74065-7

Fredriksson, M.; Thybring, E.E. 2018. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 25: 4477–4485. https://doi.org/10.1007/s10570-018-1898-9

Glass, S.V.; Zelinka, S.L. 2010. Moisture relations and physical properties of wood. In Wood Handbook. Wood as an Engineering Material Chapter 4. Centennial ed.

General technical report FPL; GTR-190. Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, United States. https://www.fs.usda.gov/treesearch/pubs/37428

Green, F.; Highley, T.L.1997. Mechanism of brown-rot decay: Paradigm or paradox. Int Biodeterior Biodegrad 39: 113–124. https://doi.org/10.1016/S0964-8305(96)00063-7

Höpken, M.; Schmidt, O.; Huckfeldt, T. 2016. Fungal moisture demands for colonization and decay of wood. In Proceedings of the 12th Meeting of the Northern European Network for Wood Science and Engineering. Wood Science and Engineering - a Key Factor on the Transition to Bioeconomy Andersons B, K.A. (Ed.).

http://www.kki.lv/old/dokumenti/WSE2016_Hopken_M.pdf

Huckfeldt,T.; Schmidt, O. 2015. Hausfäule- und Bauholzpilze Diagnose und Sanierung. 2. Auflage, Rudolf Müller, Köln. https://www.rudolf-mueller.de/data/mediapool/pt_huckfeldt_hausfaeule_2a.pdf

Huckfeldt, T.; Schmidt, O.; Quader, H. 2005. Ökologische Untersuchungen am Echten Hausschwamm und weiteren Hausfäulepilzen. Holz Roh- Werkst 63: 209–219. https://doi.org/10.1007/s00107-004-0559-x

Lowell, E.C. 1981. Fluorescence microscopy for detecting incipient decay and estimating residual strength of wood. Master of Science. Oregon State University. Oregon, United States. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/ns064798k

Lucejko, J.J.; Mattonai, M.; Zborowska, M.; Tamburini, D.; Cofta, G.; Cantisani, E.; Kúdela, J.; Cartwright, C.; et al. 2018. Deterioration effects of wet environments and brown rot fungus Coniophora puteana on pine wood in the archaeological site of Biskupin (Poland). Microchem J 138: 132–146. https://doi.org/10.1016/j.microc.2017.12.028

Mahajan, S.; Jeremic, D.; Goacher, R.E.; Master, E.R. 2012. Mode of coniferous wood decay by the white rot fungus Phanerochaete carnosa as elucidated by FTIR and ToF-SIMS. Appl Microbiol Biotechnol 94: 1303–1311. https://doi.org/10.1007/s00253-011-3830-1

Martínez, G.; Núñez, P.; González, W.; Rodríguez, F.; Gómez, M. 2009. Distribución vertical de la chinche del eucalipto Thaumastocoris peregrinus Carpintero y Dellappe 2006 (Hemiptera; Thaumastocoridae): Resultados preliminares. Ser Act Difusión 567: 31–35. http://www.ainfo.inia.uy/digital/bitstream/item/2328/1/14432290409100546.pdf#page=32

Mattos, B.D.; de Cademartori, P.H.G.; Lourençon, T.V.; Gatto, D.A.; Magalhães, W.L.E. 2014. Biodeterioration of wood from two fast-growing eucalypts exposed to field test. Int Biodeter Biodegr 93: 210– 215. https://doi.org/10.1016/j.ibiod.2014.04.027

Meyer, L.; Brischke, C. 2015. Fungal decay at different moisture levels of selected European grown wood species. Int Biodeter Biodegr 103: 23–29. https://doi.org/10.1016/j.ibiod.2015.04.009

Mitsuhashi, J.G.; Morrell, J.J. 2012. Effects of Environmental Factors on Decay Rates of Selected White- and Brown-Rot Fungi. Wood Fiber Sci 44: 343–356. https://core.ac.uk/reader/10195248

Monrroy, M.; Ortega, I.; Ramírez, M.; Baeza, J.; Freer, J. 2011. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme Microb Technol 49: 472–477. https://doi.org/10.1016/j.enzmictec.2011.08.004

Murace, M.; Luna, M.L.; Ciuffani, M.G.G.; Perelló, A. 2017. Modificaciones anatómicas y químicas en el leño de ejemplares del arbolado de la ciudad de la plata (Buenos Aires) causadas por Laetiporus sulphureus (basidiomycota, polyporales). Bol Soc Argent Bot 52: 647–661. https://doi.org/10.31055/1851.2372.v52.n4.18843

Ortiz, R.; Párraga, M.; Navarrete, J.; Carrasco, I.; de la Vega, E.; Ortiz, M.; Herrera, P.; Jurgens, J.A.; et al. 2014. Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile. Microb Ecol 67: 568–575. https://doi.org/10.1007/s00248-013-0358-1

Owen, N.L.; Thomas, D.W. 1989. Infrared studies of “hard” and “soft” woods. Appl Spectrosc 43: 451– 455. https://doi.org/10.1366/0003702894202760

Pandey, K.K. 1999. A study of chemical structure of soft and harwood and wood polymers by FTIR spectrscopy. J Appl Polym Sci 71: 1969–1975. https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12%3C1969::AID-APP6%3E3.0.CO;2-D

Pandey, K.K.; Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry following decay by brown- rot and white-rot fungi. Int Biodeter Biodegr 52: 151–160. https://doi.org/10.1016/S0964-8305(03)00052-0

Pandey, K.K.; Nagveni, H.C. 2007. Schnellcharakterisierung von durch Weiß- und Braunfäulepilze abgebautem Holz von Pinus roxburghii und Hevea brasiliensis mittels FTIR-Spektroskopie. Holz Roh Werkst 65: 477–481. https://doi.org/10.1007/s00107-007-0181-9

Popescu, C.M.; Popescu, M.C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. 2007. Spectral characterization of Eucalyptus wood. Appl Spectrosc 61: 1168–1177. https://doi.org/10.1366/000370207782597076

Rodrigues, J.; Faix, O.; Pereira, H. 1998. Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung 52: 46–50. https://doi.org/10.1515/hfsg.1998.52.1.46

Schmidt, O.; Liese, W.; Moreth, U. 1996. Decay of timber in a water cooling tower by the basidiomycete Physisporinus vitreus. Mater Org 30: 161-177.

Schmidt, O. 2006. Wood and tree decay. Biology, damage, protection, and use. Springer-Verlag Berlin Heidelberg. https://link.springer.com/content/pdf/10.1007/3-540-32139-X.pdf

Schwarze, F.W.M.R.; Mattheck, C.; Engels, J. 2000. Fungal strategies of wood decay in trees. Springer-Verlag Berlin Heidelberg. https://www.springer.com/gp/book/9783540672050

Shi, J.; Jian, L. 2012. Metabolites and chemical group changes in the wood –forming tissue of Pinus Koraiensis under inclined conditions. BioResources 7: 3463–3475. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_3463_Shi_Li_Metabolites_Wood_Pinus_koraiensis

Stienen, T.; Schmidt, O.; Huckfeldt, T. 2014. Wood decay by indoor basidiomycetes at different moisture and temperature. Holzforschung 68: 9–15. https://doi.org/10.1515/hf-2013-0065

Thybring, E.E. 2013.The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. Int Biodeter Biodegr 82: 87–95. https://doi.org/10.1016/j.ibiod.2013.02.004

Thybring, E.E. 2017. Water relations in untreated and modified wood under brown-rot and white-rot decay. Int Biodeter Biodegr 118: 134–142. https://doi.org/10.1016/j.ibiod.2017.01.034

Thybring, E.E.; Kymäläinen, M.; Rautkari, L. 2018. Moisture in modified wood and its relevance for fungal decay. IForest 11: 418–422. https://doi.org/10.3832/ifor2406-011

Traoré, M.; Kaal, J.; Martínez-Cortizas, A. 2018. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Sci Technol 52: 487–504. https://doi.org/10.1007/s00226-017-0967-9

Walchli, O. 1980. Der echte Hausschwamm - Erfahrungen über Ursachen und Wirkungen seines Auftretens. Holz Roh Werkst 38: 169–174. http://doi.org/10.1007/bf02607473

Downloads

Published

2021-01-01

How to Cite

Benítez, V. ., Franco, J. ., Camargo, Álvaro ., Raimonda, P. ., Mantero, C. ., & Ibáñez, C. . (2021). Influence of initial wood moisture on decay process by two brown- rot fungi. Maderas-Cienc Tecnol, 23, 1–12. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4634

Issue

Section

Article