Use of Eucalyptus grandis clones treated with a water repellent to improve the dimensional stability of utility poles


  • Claudia Ibañez
  • Damian Gherscovic


Anti-shrink efficiency, dimensional stability, Eucalyptus grandis, shrinking-swelling, water repellent


Wood is a common construction material used in most environments. However, its sensibility to abiotic agents, in particular those that affect the dimensional stability, limits the materials durability and decreases its properties. In this work, the efficiency of a paraffin-emulsion-based product as a water repellent, combined with the selection of Eucalyptus grandis clones with a low cracking index, was tested for its use in utility poles in order to improve the woods dimensional stability. Four selected Eucalyptus grandis clones were treated with the product mixed with Chromated Copper Arsenate - the most commonly used wood protector - in a single stage by the Bethell method at two retention levels. The dimensional stability of the treated samples was studied through the determination of anti-shrink efficiency. Test samples were also exposed to accelerated weathering processes for 200 h, and later analyzed by SEM microscopy. Results showed a significant improvement in the dimensional stability of treated wood when compared to samples without the water repellent, with variable efficacy depending on the clone used. Despite the weathering process slightly affected the appearance of the wood surface, the product is suitable for exterior use.


Download data is not yet available.


Arango, B.; Tamayo, L. 2008. Densidad de la madera en clones de Eucalyptus por densitometría de rayos X. Rev Fac Ing Univ Antioquia 45: 87-99.

Arantes, L. S.; Hein, P. R. G.; Silva, J. R. M.; Soares, V.C. 2017. Effect of CCA- C preservative in the dimensional stability of the Eucalyptus wood. Sci For Piracicaba 45(114):285-293.

Can, A.; Sivrikaya, H. 2016. Dimensional stabilization of wood treated with tall oil dissolved in different solvents. Maderas-Cienc Tecnol 18 (2): 317 – 324.

Chau, T.; Ma, E.; Cao, J. 2015. Moisture Adsorption and Hygro expansion of Paraffin Wax Emulsion-treated Southern Pine (Pinus spp.). BioResources 10 (2): 2719- 2731. DOI: 10.15376/biores.10.2.2719-2731.

Cogulet, A.; Blanchet, P.; Landry, V. 2018. The multifactorial aspect of wood weathering: a review based on a holistic approach of wood degradation protected by clear coating. BioResources.13(1): 2116-2138.

Coronel, E. O. 1994. Fundamentos de las propiedades físicas y mecánicas de las maderas, 1º parte, fundamentos de las propiedades físicas de las maderas. Instituto de Tecnología de la Madera. 1ed. Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Santiago del Estero.

França, F.J.; Filgueira, T.S.; Baptista, G. 2020. Effect of growth stress and interlocked grain on splitting of seven different hybrid clones of Eucalyptus grandis × Eucalyptus urophylla Wood. Holzforschung 74(10): 917–926.

Freitas, D.L.; Carvalho, D. E.; Beltrame, R.; dos Santos, G. A.; Gatto, D. A.; Haselein, C.R. 2016. Estabilidade dimensional da madeira de clones de Eucalyptus spp. Sci

Agrar Parana, Marechal Cândido Rondon 5 (4): 435-43.

He, Z.; Qu, L.; Wang, Z.; Qian, J.; Yi, S. 2019. Efects of zinc chloride–silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism. Scientific Reports 9:1601. Available

Hernández, M.; Zaderenko, C.; Monteoliva, S. 2014. Tensiones de crecimiento y propiedades físicas de la madera de Eucalyptus dunnii implantado en Argentina. Maderas-Cienc Tecnol 6 (3): 373-384. DOI: 10.4067/S0718-221X2014005000030.

Hoffmeyer, P.; Engelund E.; Thygesen, L. 2011. Equilibrium moisture content (EMC) in Norway spruce during the first and second desortions. Holzforschung 65: 875 – 882. DOI: 10.1515/HF.2011.112.

López, J.; Mastrandrea, C.A.; López, A.J.; Hernandez, M.A.; Martínez, M.S.; Oberschelp, G.P.; Harrand, J. and L. 2018. Tensiones de crecimiento, propiedades físicas, mecánicas y defectos en tablas de clones puros e hibridos de Eucalyptus grandis del INTA. XXXII Jornadas forestales de Entre Rios. Concordia. Argentina. Available on

Michelman. 2009. Wax Emulsions - Modifying the Effects of Water on Aqueous- Based Coatings and Enhancing Secondary Properties in OEM Wood Coatings. Available on

Nagarajappa, G. B.; Pandey, K.K. 2016. UV resistance and dimensional stability of wood modified with isopropenyl acetate. Journal of Photochemistry & Photobiology B: Biology 155: 20–27.

Oliveira, J.; Filho, M.; Fielder, N. 2010. Avaliaçao da retratibilidad da madeira de sete espécies de Eucalyptus. Revista Árbore, Viçosa, 34 (5): 929-936.

Richter, C. 2015.Wood Characteristics. Description, Causes, Prevention, Impact on Use and Technological Adaptation. Springer International Publishing Switzerland. 215 p. DOI 10.1007/978-3-319-07422-1

Rowell, R.; Youngs, R. 1981. Dimensional stabilization of wood in use. United States Department of Agriculture, USDA. Forest Products Laboratory, USA. Research note FPL-0243: 1–8. Available on

Sargent, R.; Gavin, D.; Dunningham, E. 2015. Measurement of Dimensional Stability. Proceedings of the Eighth European Conference on Wood Modification. Helsinki, Finland.

Sargent, R. 2019. Evaluating dimensional stability in solid wood: a review of current practice. J Wood Sci 65: 36. DOI: 10.1186/s10086-019-1817-1.

Skaar, C. 1988. Wood-water relations. Springer series in wood science. p. 263.DOI: 10.1007/978-3-642-73683-4




How to Cite

Ibañez, C. ., & Gherscovic, D. . (2021). Use of Eucalyptus grandis clones treated with a water repellent to improve the dimensional stability of utility poles. Maderas-Cienc Tecnol, 23, 1–10. Retrieved from