Bending moment resistance of t-type joints reinforced with basalt and glass woven fabric materials


  • Abdurrahman Karaman


Basalt woven fabric, bending moment resistance, glass woven fabric, two-pin dowel joint, wooden dowel


This study investigated the bending moment resistance of T-type, two-pin dowel joints connected with Scotch pine dowel (Pinus slyvestris), beech dowel (Fagus orientalis), chestnut dowel (Castanea sativa) and oak dowel (Quercus petraea) and reinforced with basalt and glass woven fabric. The tests was carried out to determine the bending moment resistance of dowel joints. As a result of bending test, it was determined that one layer and two surfaces the reinforce with fiber woven fabrics increases the mechanical performance of furniture fasteners according to obtained data from tests conducted on the T-type, two pin dowel joints. The test samples prepared from the oak wooden give the higher moment values than the beech wooden. This study showed that the joining with the oak dowel was 13 % higher than the beech dowel, 32 % the chestnut dowel, and 43 % higher than the Scotch pine dowel (for the bending moment resistance), respectively. According to the bending moment resistance of the samples reinforced by fiber woven fabrics. The highest bending moment resistance value was obtained in the test specimens of reinforced with the basalt woven fabric, the lowest bending moment resistance value was obtained in the test specimens not reinforced (Control). In general, it was determined that the wood species by 3 %, wooden dowel species by 43 %, and fiber woven fabric types by 72 % have been effects on the results of the bending tests.


Download data is not yet available.


André, A.; Johnsson, H. 2010. Flax fiber-reinforced glued-laminated timber in tension perpendicular to the grain: experimental study and probabilistic analysis. J Mater Civ Eng 22 (9): 827–835.

Bal, B.C.; Bektaş, İ. 2018. A research on the determination of the relationship between density and some mechanical properties of wood. Mamad 1(2): 51-61.

Basterra, L.A.; Acuna, L.; Casado, M.; Lopez, G; Bueno, A. 2012. Strength testing of Poplar duo beams, Populus x euramericana (Dode) Guinier cv. I-214, with fibre reinforcement. Constr Build Mater 36: 90-96.

Bektaş, İ.; Güler, C.; Baştürk, M. A. 2002. Principal mechanical properties of eastern beech wood (Fagus orientalis L.) naturally grown in Andırın northeastern mediterranean region of Turkey. Turk J Agric For 26:147–154.

Brol, J.; Wdowiak, A. 2017. The use of glass and aramid fibres for the strengthening of timber structures. Ann Wars Univ Life Sci For Wood Technol 100: 128–138.

Brol, J.; Nowak, T.; Wdowiak, A. 2018. Numerical Analysis and Modelling of Timber Elements Strengthened with FRP Materials. Ann Wars Univ Life Sci For Wood Technol 104: 274–282.

Borri, A.; Corradi, M.; Speranzini, E. 2013a. Reinforcement of wood with natural fibers. Compos B Eng 53: 1-8.

Borri, A.; Corradi, M.; Speranzini, E. 2013b. Bending tests on natural fiber reinforced fir wooden elements. Adv Mater Res 778: 537–544. https://doi:10.1016/j.compositesb.2013.04.039

Bozkurt, Y.; Erdin, N. 1995. The relationship between density and mechanical properties of woods. Forestist 45(2): 11-34.

Chairman, C.A.; Kumaresh Babu, S.P. 2013. Mechanical and abrasive wear behavior of glass and basalt fabric-reinforced epoxy composites. J Appl Polym Sci 130(1): 120-130.

Chen, M.; Li, X.M.; Lyu, J.H. 2018. Influence of dowel diameter and curing time on strength of double dowel joint. Wood Res 63(4): 591-598.

Colombo, C.; Vergani, L.; Burman, M. 2012. Static and fatgiue characterization of new basalt fibre reinforced composites. Compos Struct 94(3): 1165-1174.

Dorigato, A; Pegoretti, A. 2012. Fatigue resistance of basalt fibers-reinforced laminates. J Compos Mater 46(15): 1773-1785.

Fiore, V.; Di Bella, G.; Valenza, A. 2011. Glass–basalt/epoxy hybrid composites for marine applications. Mater Des 32(4): 2091-2099.

Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. 2015. A review on basalt fibre and its composites. Compos B Eng 74: 74-94.

Gaff, M.; Kačík, F.; Gašparík, M. 2019. Impact of thermal modification on the chemical changes and impact bending strength of European oak and Norway spruce wood. Compos Struct 216: 80-88. https://doi:10.1016/j.compstruct.2019.02.09 1

Hao, J.; Xu, L.; Wu, X.; Li, X. 2020. Analysis and modeling of the dowel connection in wood T type joint for optimal performance. Compos Struct 253: 112754.

Kollmann, F.; Cote, W. A. 1968. Principles of wood science and technology. Springer Verlag.

McConnell, E.: McPolin, D.; Taylor, S. 2015. Post-tensioning glulam timber beams with basalt FRP tendons. Constr Mater 168(5): 232–240.

Monaldo, E.; Nerilli, F.; Vairo, G. 2019. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos Struct 214: 246-263.

Nowak, T.P; Jasienko, J.; Czepizak, D. 2013. Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips. Constr Build Mater 40: 197-206.

Raftery, G.M.; Kelly, F. 2015. Basalt FRP rods for reinforcement and repair of timber. Compos. Part B Eng 70: 9–19.

Osmannezhad, S.; Faezipour, M.; Ebrahimi, G. 2014. Effects of GFRP on bending strength of glulam made of poplar (Populus deltoids) and beech (Fagus orientalis). Constr Build Mater 51: 34-39.

Schober, K.U.; Harte, A.M.; Kliger, R.; Jockwer, R.; Xu, Q.; Chen J.F. 2015. FRP reinforcement of timber structures. Constr Build Mater 97: 106-118.


Sim, J. 2001. Static and dynamics analysis of strengthening effect of glass FRP for bridge deck plate. Tech Res Report submitted to Hanyang University.

Turkish Standardization Institute. 1976. TS 2471: Wood - Determination of Moisture Content for Physical and Mechanical Tests. TSE. Ankara, Turkey.

Turkish Standardization Institute. 1976. TS 2472: Wood - Determination of Density for Physical and Mechanical Tests. TSE. Ankara, Turkey.

Uysal, M.; Haviarova, E. 2018. Estimating design values for two-pin moment resisting dowel joints with lower tolerance limit approach. Bioresources 13(3): 5241-5253.

Vassiliou, V.; Barboutis, I.; Kamperidou, V. 2016. Strength of corner and middle joints of upholstered furniture frames constructed with black locust and beech wood. Wood Res 61(3): 495-504.

Wdowiak, A.; Brol, J. 2019. Effectiveness of reinforcing bent non-uniform pre-stressed glulam beams with basalt fibre reinforced polymers rods. Materials 12: 3141.

Wdowiak-Postulak, A. 2021. Basalt fibre reinforcement of bent heterogeneous glued laminated beams. Materials 14: 51.

Wang, X.; Wu, Z.; Wu, G.; Zhu, H.; Zen, F. 2013. Enhancement of basalt FRP by hybridization for long-span cablestayed bridge. Compos B Eng 44(1): 184-192.

Wang, B.; Bachtiar, E.V.; Yan, L.; Kasal, B.; Fiore, V. 2019. Flax; Basalt; E-Glass frp and their hybrid FRP strengthened wood beams: an experimental study. Polym 11(8): 1-16.

Yerlikaya, N.C., Aktas, A. 2013. Enhancement of t-joints of spruce wood reinforced by using glass-fiber composite laminate. Acad J 8 (13): 515-523.

Záborský, V.; Sikora, A.; Gaff, M.; Kašičková, V.; Borůvka, V. 2018. Effect of selected factors on stiffness of dowel joints. Bioresources 13(3): 5416-5431.

Zhang, J.; Li, G.; Sellers Jr., T. 2003. Bending fatigue life of two-pin dowel joints in furniture grade pine plywood. For Prod J 53 (9): 33-39.

Zhou, A.; Chow, C.L.; Lau, D. 2018. Structural behavior of GFRP reinforced concrete columns under the influence of chloride at casting and service stages. Compos Part B Eng 136: 1-9. https://doi:10.1016/j.compositesb.2017.10.011

Zhou, A.; Chow, C.L.; Lau, D. 2019. Structural performance of FRP confined seawater concrete columns under chloride environment. Compos Struct 216: 12-19. https://doi:10.1016/j.compstruct.2019.02.058

Zhou, A.; Chow, C.L.; Lau, D. 2020. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature. Compos Part A Appl Sci Manuf 131: 105802. https://doi:10.1016/j.compositesa.2020.105802




How to Cite

Karaman, A. . (2021). Bending moment resistance of t-type joints reinforced with basalt and glass woven fabric materials . Maderas-Cienc Tecnol, 23, 1–12. Retrieved from