Biologically synthesised copper oxide and zinc oxide nanoparticle formulation as an environmentally friendly wood protectant for the management of wood borer, Lyctus africanus


  • K. S. Shiny
  • R. Sundararaj


Biological synthesis, Lantana camara, Lyctus africanus, nanoparticles, wood protection


The management of Lyctus africanus, one of the major dry wood pests in the tropical region is difficult due to its secluded habits and long lifecycle and therefore, its control measures are limited to the usage of insecticides. The insecticides particularly the metal salts are effective, but in some cases their leaching leads to concerns about environmental pollution. Nanometal particles are found to be more effective than metal salts. Presently available metal nanoparticles are synthesized using physical or chemical methods and their production results in toxic by-products and are costly. The current investigation deals with synthesis and use of metal nanoparticle for wood protection in an environmentally friendly and cost-effective way. The plant extracts that are reported to have wood preservative properties were used for the synthesis of metal nanoparticles. Copper oxide and zinc oxide nanoparticles were synthesized using leaf extracts of Lantana camara. The efficacy of the synthesized Lantana camara leaf extract and copper oxide or zinc oxide nanoparticle formulation as a wood protectant was tested against Lyctus africanus as per BIS 4873 Part 2. The formulation of copper oxide nanoparticle and Lantana camara leaf extract effectively protected the treated rubberwood blocks from Lyctus africanus attack, when compared to zinc oxide nanoparticle Lantana camara leaf extract formulation and can be developed into a stable, ecofriendly wood preservative.


Download data is not yet available.


Akhtari, M.; Arefkhani, M. 2010. Application of Nanotechnology in Wood Preservation. In 41st Annual Meeting of the International Research Group on Wood Protection, Biarritz, France, 9-13 May 2010. IRG Secretariat. IRG/WP 10-30542.

Ali, H.R.K.; Hashim, S.M. 2019. Determining Efficacy and Persistence of the Wood Preservative Copper Chrome Arsenate Type C against The Wood Destroying Insects and Treated Wood Durability. Egypt Acad J Biolog Sci 12(1): 65-78.

Ash, M.; Ash, I. 2004. Handbook of preservatives. Synapse Information Resources, Inc. New York, USA. 850.

ASTM. 2005. D1413-05: Standard Test Method for Wood Preservatives by Laboratory Soil-Block Cultures. ASTM International, West Conshohocken, PA, USA.

Bak, M.; Yimmou, B.M.; Csupor, K.; Ne ́meth, R., Cso ́ka, L. 2012. Enhancing the durabil- ity of wood against wood destroying fungi using nano-zink. In: International Scientific Conference on Sustainable Development & Ecological Footprint, Budapest, Hungary, 16.

Borges, C.C.; Tonoli, G.H.D.; Cruz, T.M.; Duarte, P.J.; Junqueira, T.A. 2018. Nanoparticles-based wood preservatives: the next generation of wood protection. Cerne 24 (4): 397-407. DOI : 10.1590/01047760201824042531

Canadian Wood Council. 2020. Durability Solutions. Available durability/durability-solutions/.

Cao, L.; Zhou, Z.; Niu, S.; Cao, C.; Li, X.; Shan, Y.; Huang, Q. 2018. Positive-Charge Functionalized Mesoporous Silica Nanoparticles as Nanocarriers for Controlled 2,4-Dichlorophenoxy Acetic Acid Sodium Salt Release. J Agric Food Chem 66(26): 6594-6603.

Civardi, C.; Schwarze, F.W.; Wick, P. 2015. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles. Environ Pollut 200: 126-32.

Clausen, C.A. 2007. Nanotechnology: Implications for the wood preservation Industry. In 38th the International Research Group on Wood Protection, Jackson Hole, WY, 20-24 May 2007. IRG Secretariat IRG/WP 07-30415.

Clausen, C.A.; Green, F.; Kartal, S.N. 2010. Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Res Lett 5: 1464-1467.

Creffield, J.W.; Greaves, H.; Howick, C.D. 1983. Boracol 40 - A potential remedial and preservative treatment for lyctids. In 14th Annual Meeting of the International Research Group on Wood Protection, Surfers Paradise, Queensland, Australia, 9-13 May 1983. IRG Secretariat. IRG/WP 1192.

Creffield, J.W. 1996. Wood Destroying Insects-Wood Borers and Termites. 2nd Edn., CSIRO Division of Forestry and Forest Products.

Dhillon, G.S.; Brar, S.K. Kaur, S.; Verma, M. 2012. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32: 49–73.

Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. 2017. Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15: 11-23.

Dujardin, E.; Peet, C.; Stubbs, G.; Culver, J.N.; Mann, S. 2003. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3: 413–417.

Dwivedi, S.; Saquib, Q.; Ahmad, B.; Ansari, S.M.; Azam, A.; Musarrat, J. 2018. Toxicogenomics: a new paradigm for nanotoxicity evaluation. Adv Exp Med Biol 1048: 143-161.

Ezealisiji, K.M.; Siwe-Noundou, X.; Maduelosi, B.; Nwachukwu, N.W.; Krause, R.W.M. 2019. Green Synthesis of Zinc Oxide Nanoparticles Using Solanum torvum (L) leaf extract and evaluation of the Toxicological Profile of the ZnO Nanoparticles-Hydrogel Composite in Wistar Albino Rats. Inter Nano Lett 9: 99–107.

Fakhari, S.; Jamzad, M.; Kabiri Fard, H. 2019. Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev 12(1): 19-24.

Fears, R.D.; Leca, J.L. 1995. Threshold levels for dip treatments of chlorpyrifos for borer control. In 26th Annual Meeting of the International Research Group on Wood Protection, Helsingør, Denmark, 11-16 June 1995. IRG Secretariat. IRG/WP 95-10137.

Findlay, W.P.K. 1985. The nature and durability of wood. Preservation of timber in the tropics. Martinus Nijhoff/Dr. W. Junk Publishers, Lancaster. 1–13.

Freeman, M.H.; McIntyre, C.R. 2008. A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. J Forest Prod Res 58(11): 6–27.

Gnanaharan, R.; Mathew, G.; Dhamodaran, T.K. 1983. Protection of rubber wood against the insect borer Sinoxylon anale Les. (Coleoptera : Bostrychidae). J Ind Acad Wood Sci 14(1): 9-11.

Gnanaharan, R.; Mathew, G. 1982. Preservative treatment of rubber wood (Hevea brasiliensis). KFRI Research Report 15: 1-16.

Gopinath, M.; Subbaiya, R.; Selvam, M.M.; Suresh, D.; Rangasamy, K. 2014. Synthesis of Copper Nanoparticles from Nerium oleander Leaf aqueous extract and its Antibacterial Activity. Int J Curr Microbiol App Sci 3(9): 814-818.,%20et%20al.pdf

Groenier, J.S.; Lebow, S. 2006. Preservative-treated wood and alternative products in the Forest Service. Tech. Rep. 0677–2809–Missoula Technology and Development Center. 44. Forest Service, United States Department of Agriculture.

Gupta, H.; Sharma, K.R.; Sharma, J.N. 2017a. Fungal Inhibition in Wood Treated with Lantana camara L. Extract. In: Wood is Good: Current Trends and Future Prospects in Wood Utilization. Pandey, K; Ramakantha, V; Chauhan, S; Kumar, A. (eds) Springer: Singapore. 269-276.

Gupta, H.; Sharma, K.R.; Chander Lekha.; Bhupender Dutt. 2017b. Potentials of Lantana camara L. leaf extract treatment for the dimensional stability of some lesser known wood species. J Pharmacogn Phytochem 6(4): 263-266.

Helal, H. 1983. Some biological informations about the small powder post beetle Lyctus africanus Leone. in Egypt (Coleoptera, Lyctidae). Agric Res Rev 59 (1): 167-175.

Hulkoti, N.I.; Taranathm, T.C. 2014. Biosynthesis of nanoparticles using microbes-a review. Coll Surf B: Biointerf 121: 474–483.

Humar, M.; Petrič, M.; Pohleven, F. 2001. Leaching of copper from wood treated with copper-based wood preservatives. Drvna industrija 52: 111-116.

Husen, A.; Iqbal, M. 2019. Nanomaterials and plant potential: an overview. In: Nanomaterials and Plant Potential. Husen, A.; Iqbal, M. (Eds) Springer: International Publishing AG, Cham. 3-29.

Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem 13: 2638-2650.

Indian Standards. 2008. IS 4873: Methods of laboratory testing of wood preservatives against fungi and borers powder post beetles, Second Revision. Part-2, Determination of threshold values of wood preservatives against borers (powder post beetles). 1–5. Bureau of Indian Standards, New Delhi.

Ito, T. 1983. Tasting behavior of Lyctus brunneus Stephens (Coleoptera: Lyctidae). Appl Ent Zool 18 (2): 289-292.

Kalawate, A. 2013. Evaluation of Copper Ethanolamine Boron Based Wood Preservative to Control Wood Destroying Insects. Mol Entomol 4 (2): 6-12.

Kartal, S.N.; Green, F.; Clausen, C.A. 2009. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? Int Biodeter Biodegr 63: 490-495.

Kartika, T.; Yoshimura, T. 2013. Nutritional quality of diet and fecundity in Lyctus africanus (Lesne). Procedia Environ Sci 17: 97 –104.

Khan, S.A.; Shahid, S.; Sajid, M.R.; Noreen, F.; Kanwal, S. 2017. Biogenic Synthesis of CuO Nanoparticles and their Biomedical Applications: A Current Review. Int J Adv Res 5(6):25-946.

Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. 2012. Applications of nanomaterials in agricultural production and crop protection: a review. Crop. Prot. 35:64-70.

Kumar, S.; Kumar, D.; Dilbaghi, N. 2017. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Env Sci Pollut Res 24: 926-937.

Lebow, S.T. 1996. Leaching of wood preservative components and their mobility in the environment—Summary of pertinent literature. Gen. Tech. Rep. FPL–GTR–93, United States Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI. 36.

Lebow, S.T. 2010. Wood Preservation. Wood Handbook: Wood as an Engineering Material. United States Department of Agriculture, Forest Service, Forest Products Laboratory Madison, WI. 328-355.

Lee, H.J.; Lee, G.; Jang, N.R.; Yun, J.H.; Song. J.Y.; Kim, B.S. 2011. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1(1): 371-374.

Lepage, E.; Salis, A.G. de.; Guedes, E.C.R. 2017. Tecnologia de proteção da madeira. Montana Quimica, São Paulo, SP. Brazil.

Lykidis, C.; Teresa De T.; Conde, M.; Galvan, J.; Mantanis, G. 2016. Termite resistance of beech wood treated with zinc oxide and zinc borate nanocompounds. Wood Mater Sci Eng 13(1): 45–49.

Majumder, D.R. 2012. Bioremediation: Copper Nanoparticles from Electronic-waste. Int J Eng Sci Technol 4(10): 4388-4389.

Mandava, K.; Kadimcharla, K.; Keesara, N.R.; Sumayya, N.F.; Prathyusha, B.; Batchu U.R. 2017. Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. Indian J Pharm Sci 79 (5): 695-700.

Mantanis, G.; Terzi, E.; Kartal, S.N.; Papadouplos, A.N. 2014. Evaluation of mold, decay and termite resistance of pine wood treated with zinc and copper based nanocompounds. Int Biodeter Biodegr 90: 140-144.

Mittal, A.K.; Chisti, Y.; Banerjee, U.C. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31: 346–356.

Moghaddam, A.B.; Namvar, F.; Moniri, M.; Tahir, S.; Azizi, P.M.; Mohamad, R. 2015. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20: 16540–16565.

Nair, K.S.S.; Mathew, G. 1984. Dried tapioca tuber for laboratory rearing of the bamboo borer, Dinoderus minutus Fabr. (Coleoptera:Bostrychidae). Mater Organ 19(1): 49-54.

Nair, S.; Pandey, K.K.; Giridhar, B.N.; Vijayalakshmi, G. 2017. Decay resistance of rubberwood (Hevea brasiliensis) impregnated with ZnO and CuO nanoparticles dispersed in propylene glycol. Int Biodeterior Biodegrad 122: 100-106.

Nair, S.; Giridhar, B.N.; Pandey, K.K. 2018. UV stabilization of wood by nano metal oxides dispersed in propylene glycol. J Photoch Photobio B 183:1-10.

Oliveira, H.C.; Stolf-Moreira, R.; Martinez, C.B.R.; Grillo, R.; de Jesus, M.B.; Fraceto, L.F. 2015. Nanoencapsulation enhances the post-emergence herbicidal activity of Atrazine against mustard plants. PLOS One 10(7): e0132971.

Peters, B.C.; Creffield, J.W.; Edridge, R.H. 2002. Lyctine (Coleoptera Bostrichidae) pests of timber in Australia: A literature review and susceptibility testing protocol. Aust For 65 (2): 107-119.

Platten, W.; Luxton, T.; Gerke, T.; Harmon, S.; Sylvest, N.; Bradham, K.; Rogers, K. 2014. Release of Micronized Copper Particles from Pressure Treated Wood Products. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/365.

Punjabi, K.; Choudhary, P.; Samant, L.; Mukherjee, S.; Vaidya, S.; Chowdhary, A. 2015. Biosynthesis of nanoparticles: a review. Int J Pharm Sci Rev Res 30: 219-226. Google Scholar

Raffi, M.M.; Husen, A. 2019. Impact of fabricated nanoparticles on the rhizospheric microorganisms and soil environment. In: Nanomaterials and Plant Potential. Husen, A.; Iqbal, M. (Eds.): Springer International Publishing AG, Cham. 529-552.

Remadevi, O.K.; Muthukrishnan, R. 1997. Efficacy of chlorpyriphos as protectant of wood against borer and termite attack. Wood News 7(1): 22-25.

Richardson, H.W. 1997. Handbook of Copper Compounds and Applications (1st ed.). CRC Press.

Schrofel, A.; Kratosova, G.; Krautova, M.; Dobrocka, E.; Vavra, I. 2011. Biosynthesis of gold nanoparticles using diatoms–silica gold and EPS-gold bionanocomposite formation. J Nanoparticle Res 13: 3207–3216.

Sekhon, B.S. 2014. Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7: 31-53.

Shiny, K.S.; Sundararaj, R.; Mamatha, N.; Lingappa, B. 2019. A new approach to wood protection: preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas-Cienc Tecnol 21(3): 347- 356.

Siddiqui, M.A.; Alhadlaq, H.A.; Ahmad, J.; Al-Khedhairy, A.A.; Musarrat, J.; Ahamed, M. 2013. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLOS One 8(8): e69534.

Singh, J.; Dutta, T.; Kim, K. H.; Rawat, M.; Samddar, P.; Kumar, P. 2018. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(84): 1-24.

Singaravelu, G.; Arockiamary, J.S.; Ganesh Kumar, V.; Govindaraju, K. 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Coll Surf B: Biointerf 57: 97–101.

Tan, C.K.S.; Hong, L.T.; Wong, Andrew.; Chang, J.J.M.; Tsang, A; Leong, P.T.; Tang, C.S.; Tan, C.C.L.; Loh, E.K.S.; Ng, W.P. 2003. Understanding timber preservation - a guide to timber and its treatment to enhance wood durability. Published by Malaysian Wood Preserving Association. 41.

Tascioglu, C.; Mesut, Y.; Selim, S.; Caglar, A. 2013. Antifungal properties of some plant extracts used as wood preservatives. Int Biodeterior Biodegrad 85(1): 23-28.

Temiz, A.; Alfredsenl, G.; Yildiz, U.C.; Engin, D.G.; Kose, G.; Akbas, S.; Yildiz, S. 2014. Leaching and decay resistance of alder and pine wood treated with copper based wood preservatives. Maderas-Cienc Tecnol 16(1): 63-76.

Terzi, E.; Kartal, S.N.; Yılgör, N.; Rautkari, L.; Yoshimura, T. 2016. Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. Int Biodeterior Biodegrad 107:77–87.

Tolley, M.P.; Laks, P.E.; Fears, R. 1998. Evaluation of chlorpyrifos and fungicides alone and in combination for control of insects and fungi in wood and wood composites. In 29th Annual Meeting of the International Research Group on Wood Protection, Maastricht, Netherlands, 14-19 June 1998. IRG Secretariat. IRG/WP 98-30187.

Van Acker, J.; Stevens, M.; Pallaske, M. 1990. Insect resistance of preservative treated tropical plywood against Lyctus. In 21st Annual Meeting of the International Research Group on Wood Protection, Rotorua, New Zealand, 13-19 May 1990. IRG Secretariat. IRG/WP/1453.

Venmalar, D. 2017. Screening of Oils of Pongamia pinnata Linn, Jatropha curcas Linn and Simarouba glauca D.C. for developing Eco-Friendly Wood Preservatives. In: Wood is Good: Current Trends and Future Prospects in Wood Utilization. Pandey, K; Ramakantha, V; Chauhan, S; Kumar, A. (eds) Springer: Singapore. 261-268.

Vijayaraghavan, K.; Ashokkumar, T. 2017. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5: 4866–4883.

Wagay, J.A.; Singh, S.; Raffi, M.M.; Rahman, Q.I.; Husen, A. 2019. Impact of carbon- based nanomaterials on plant functioning and rhizosphere. In: Nanomaterials and Plant Potential. Husen, A.; Iqbal, M. (Eds.): Springer International Publishing AG, Cham.553-575.

Zabel, R.A.; Morrell, J.J. 1992. Wood Microbiology: Decay and Its Prevention. Academic Press, London.

Zandi-Sohani, N.; Hojjati, M.; Carbonell-Barrachina,A.A. 2012. Bioactivity of Lantana camara L. essential oil against Callosobruchus maculatus (Fabricius). Chilean J Agric Res 72(4): 502–506.




How to Cite

Shiny, K. S. ., & Sundararaj, R. . (2021). Biologically synthesised copper oxide and zinc oxide nanoparticle formulation as an environmentally friendly wood protectant for the management of wood borer, Lyctus africanus. Maderas-Cienc Tecnol, 23, 1–12. Retrieved from