10 preguntas de los edificios energía cero: revisión del estado del arte

Autores/as

  • Micaela D'Amanzo Instituto de Ambiente Hábitat y Energía (INAHE), Centro Científico Tecnológico CCT, Mendoza, Argentina
  • María Victoria Mercado Instituto de Ambiente Hábitat y Energía (INAHE), Centro Científico Tecnológico Mendoza CCT, Mendoza, Argentina
  • Carolina Ganem-Karlen Instituto de Ambiente Hábitat y Energía (INAHE), Centro Científico Tecnológico Mendoza CCT, Mendoza, Argentina

DOI:

https://doi.org/10.22320/07190700.2020.10.02.02

Palabras clave:

edificios, ZEB, sustentabilidad, eficiencia energética

Resumen

Los Edificios Energía Cero o ZEB (Zero Energy Buildings) promueven una mirada integral de la arquitectura sustentable y un cambio profundo en la manera de construir. La investigación y el desarrollo en transición energética deben necesariamente enfrentarse a problemas tecnológicos y socioeconómicos. En esa línea, la meta aquí es ofrecer una respuesta para minimizar el impacto energético y ambiental del sector edilicio. Se realizó, para ello, una revisión del estado del arte de la temática, donde se seleccionaron 97 artículos científicos considerados de mayor relevancia, en el período de 2006 a 2020. La metodología consistió en un análisis de esos textos a partir de diez preguntas formuladas para abordar la temática: sus orígenes, estado actual y proyecciones futuras en relación a la eficiencia energética y la sustentabilidad. Las preguntas hacen referencia a definiciones (P1), sustentabilidad (P2), tecnologías involucradas (P3), emisiones (P5), energía (P4) (P6) (P7), normativas (P8), cambio climático (P9) y proyecciones futuras (P10). El trabajo permite concluir que los ZEB se integran de manera holística en la transformación hacia un futuro renovable y sustentable en materia de soluciones energéticas y, a su vez, tienen potencialidad para ser implementados en diferentes posiciones geográficas y climáticas. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Micaela D'Amanzo, Instituto de Ambiente Hábitat y Energía (INAHE), Centro Científico Tecnológico CCT, Mendoza, Argentina

Arquitecta
Becaria doctoral

María Victoria Mercado, Instituto de Ambiente Hábitat y Energía (INAHE), Centro Científico Tecnológico Mendoza CCT, Mendoza, Argentina

Doctora en Ciencias
Investigador Adjunto

Carolina Ganem-Karlen, Instituto de Ambiente Hábitat y Energía (INAHE), Centro Científico Tecnológico Mendoza CCT, Mendoza, Argentina

Doctora en Arquitectura
Investigador Independiente

Citas

Attia, S. (2016). Towards regenerative and positive impact architecture: A comparison of two net zero energy buildings. Sustainable Cities and Society, 26, 393–406. DOI: https://doi.org/10.1016/j.scs.2016.04.017

Attia, S. (2018). Chapter 2: Evolution of Definitions and Approaches. En Attia, S. Net Zero Energy Buildings (NZEB) (pp. 21–51). DOI: https://doi.org/10.1016/b978-0-12-812461-1.00002-2

Azzouz, A., Borchers, M., Moreira, J. y Mavrogianni, A. (2017). Life cycle assessment of energy conservation measures during early stage office building design: A case study in London, UK. Energy and Buildings, 139, 547–568. DOI: https://doi.org/10.1016/j.enbuild.2016.12.089

Belausteguigoitia Garaizar, J., Laurenz Senosiain, J. y Gómez Telletxea, A. (2010). El reto de los edificios ZERO: el siguiente paso de la arquitectura sostenible. SB10mad Sustainable Building Conference, 10. Recuperado de http://www.sb10mad.com/ponencias/archivos/d/D007.pdf

Berardi, U. (2018). ZEB and nZEB (definitions, design methodologies, good practices, and case studies). En Desideri, U. y Asdrubali, F. (Eds.), Handbook of Energy Efficiency in Buildings: A Life Cycle Approach (pp. 88-116). Elsevier Inc.

Booth, S., Barnett, J., Burman, K., Hambrick, J. y Westby, R. (2010). Net Zero Energy Military Installations: A Guide to Assessment and Planning. NREL Technical Report, (August). Recuperado de https://www.osti.gov/biblio/986668

Bordoloi, N., Sharma, A., Nautiyal, H.y Goel, V. (2018). An intense review on the latest advancements of Earth Air Heat Exchangers. Renewable and Sustainable Energy Reviews, 89(April), 261–280. DOI: https://doi.org/10.1016/j.rser.2018.03.056

Brambilla, A., Salvalai, G., Imperadori, M. y Sesana, M. M. (2018). Nearly zero energy building renovation: From energy efficiency to environmental efficiency, a pilot case study. Energy and Buildings, 166, 271–283. DOI: https://doi.org/10.1016/j.enbuild.2018.02.002

Buso, T., Becchio, C. y Corgnati, S. P. (2017). NZEB, cost- and comfort-optimal retrofit solutions for an Italian Reference Hotel. Energy Procedia, 140, 217–230. DOI: https://doi.org/10.1016/j.egypro.2017.11.137

Calvente, A. (2007). Resiliencia: un concepto clave para la sustentabilidad. Programa de Difusión e Investigación en Sustentabilidad, Centro de Altos Estudios Globales, Universidad Abierta Interamericana. Buenos Aires. Recuperado de http://www.sustentabilidad.uai.edu.ar/pdf/cs/UAIS-CS-200-003%20-%20Resiliencia.pdf

Cao, X., Dai, X. y Liu, J. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and Buildings, 128, 198–213. DOI: https://doi.org/10.1016/j.enbuild.2016.06.089

Carlucci, S., Causone, F., Pagliano, L. y Pietrobon, M. (2017). Zero-Energy Living Lab En Littlewood, J., Spataru, C., Howlett, R. y L. Jain, L. (Eds.). Smart Energy Control Systems for Sustainable Buildings (pp. 1-35). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-52076-6_1

Carpino, C., Mora, D., Arcuri, N. y De Simone, M. (2017). Behavioral variables and occupancy patterns in the design and modeling of Nearly Zero Energy Buildings. Building Simulation, 10(6), 875–888. DOI: https://doi.org/10.1007/s12273-017-0371-2

Causone, F., Tatti, A., Pietrobon, M., Zanghirella, F. y Pagliano, L. (2019). Energy & Buildings Yearly operational performance of a nZEB in the Mediterranean climate. Energy & Buildings, 198, 243–260. DOI: https://doi.org/10.1016/j.enbuild.2019.05.062

Chai, J., Huang, P. y Sun, Y. (2019). Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions. Energy, 185, 176–189. DOI: https://doi.org/10.1016/j.energy.2019.07.055

Chastas, P., Theodosiou, T., Kontoleon, K. J. y Bikas, D. (2018). Normalising and assessing carbon emissions in the building sector : A review on the embodied CO2 emissions of residential buildings. Building and Environment, 130(December 2017), 212–226. DOI: https://doi.org/10.1016/j.buildenv.2017.12.032

Chen, T. y Norford, L. (2020). Energy performance of next-generation dedicated outdoor air cooling systems in low-energy building operations. Energy and Buildings, 209. DOI: https://doi.org/10.1016/j.enbuild.2019.109677

Comisión Europea (2010). Directiva 2010/31/UE relativa a la eficiencia energética de los edificios. Boletin Oficial, L135, 13–35.

Congedo, P. M., Baglivo, C., Zacà, I. y D’Agostino, D. (2015). High performance solutions and data for nZEBs offices located in warm climates. Data in Brief, 5(2015), 502–505. DOI: https://doi.org/10.1016/j.dib.2015.09.041

Crawley, D., Pless, S. y Torcellini, P. (2009). Getting to Net Zero. ASHRAE Journal, 51(9), 18-25.

D’Agostino, D. (2016). Synthesis Report on the National Plans for Nearly Zero Energy Buildings ( NZEBs ). Progress of Member States towards NZEBs. DOI: https://doi.org/10.2790/659611

D’Agostino, D. y Parker, D. (2020). A framework for the cost-optimal design of nearly zero energy buildings ( NZEBs ) in representative climates across Europe. Energy, 149, 814–829. DOI: https://doi.org/10.1016/j.energy.2018.02.020

D’Agostino, D., Marino, C., Minichiello, F. y Russo, F. (2017). Obtaining a NZEB in Mediterranean climate by using only on-site renewable energy: Is it a realistic goal? Energy Procedia, 140, 23–35. DOI: https://doi.org/10.1016/j.egypro.2017.11.120

D’Amanzo, M., Mercado, M. V. y Ganem Karlen, C. (2019). Edificios de Energía Cero, Cero Neta y Casi Nula: Revisión de normativa y perspectivas futuras para países en vías de desarrollo. En XI Congreso Regional de Tecnología de la Arquitectura (pp. 1–11). Mar del Plata, Buenos Aires, Argentina.

De Gisi, S., Casella, P., Notarnicola, M. y Farina, R. (2016). Grey water in buildings: a mini-review of guidelines, technologies and case studies. Civil Engineering and Environmental Systems, 33(1), 35–54. DOI: https://doi.org/10.1080/10286608.2015.1124868

Debbarma, M., Sudhakar, K. y Baredar, P. (2017). Resource-Efficient Technologies Comparison of BIPV and BIPVT: A review. Resource-Efficient Technologies, 3(3), 263-271. DOI: https://doi.org/10.1016/j.reffit.2016.11.013

Deng, S., Wang, R. Z. y Dai, Y. J. (2014). How to evaluate performance of net zero energy building - A literature research. Energy, 71, 1–16. DOI: https://doi.org/10.1016/j.energy.2014.05.007

Deru, M., Griffith, B. y Torcellini, P. (2006). Establishing Benchmarks for DOE Commercial Building R & D and Program Evaluation Preprint. (No. NREL/CP-550-39834). National Renewable Energy Lab. (NREL), Golden, CO (United States).

Energía Estratégica (2020). Datos por país: En todos los mercados latinoamericanos crece la generación distribuida. 24 de agosto de 2020. Recuperado de https://www.energiaestrategica.com

Fernández, A., Garzón, B. S. y Elsinger, D. (2020). Incidencia de las estrategias pasivas de diseño arquitectónico en la etiqueta de eficiencia energética en Argentina. Revista Hábitat Sustentable, 10(1), 56–67. DOI: https://doi.org/10.22320/07190700.2020.10.01.05 HS

Ferrara, M., Lisciandrello, C., Messina, A., Berta, M., Zhang, Y. y Fabrizio, E. (2020). Optimizing the transition between design and operation of ZEBs: Lessons learnt from the Solar Decathlon China 2018 SCUTxPoliTo prototype. Energy and Buildings, 213. DOI: https://doi.org/10.1016/j.enbuild.2020.109824

Finnegan, S., Jones, C. y Sharples, S. (2018). The embodied CO2e of sustainable energy technologies used in buildings: A review article. Energy and Buildings, 181, 50–61. DOI: https://doi.org/10.1016/j.enbuild.2018.09.037

Fjola, T., Houlihan-wiberg, A., Andresen, I., Georges, L., Heeren, N., Stina, C. y Brattebø, H. (2018). Is a net life cycle balance for energy and materials achievable for a zero emission single-family building in Norway ? Energy and Buildings, 168, 457–469. DOI: https://doi.org/10.1016/j.enbuild.2018.02.046

Flores-Larsen, S., Filippín, C. y Barea, G. (2019). Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, 184(December), 216–229. DI: https://doi.org/10.1016/j.enbuild.2018.12.015

Garde, F., Lenoir, A., Scognamiglio, A., Aelenei, D., Waldren, D., Rostvik, H. N., … y Cory, S. (2014). Design of net zero energy buildings: Feedback from international projects. Energy Procedia, 61, 995-998. DOI: https://doi.org/10.1016/j.egypro.2014.11.1011

Good, C., Andresen, I. y Hestnes, A. G. (2015). Solar energy for net zero energy buildings - A comparison between solar thermal, PV and photovoltaic-thermal (PV/T) systems. Solar Energy, 122, 986-996. DOI: https://doi.org/10.1016/j.solener.2015.10.013

Guillén-Lambea, S., Rodríguez-Soria, B. y Marín, J. M. (2017). Comfort settings and energy demand for residential nZEB in warm climates. Applied Energy, 202, 471–486. DOI: https://doi.org/10.1016/j.apenergy.2017.05.163

Häkämies, S., Hirvonen, J., Jokisalo, J., Knuuti, A., Kosonen, R., Niemelä, T., …y Pulakka, S. (2015). Heat pumps in energy and cost efficient nearly zero energy buildings in Finland. Finlandia: JULKAISIJA – UTGIVARE – PUBLISHER,

Hamdy, M., Nguyen, A. T. y Hensen, J. L. M. (2016). A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy and Buildings, 121, 57–71. DOI: https://doi.org/10.1016/j.enbuild.2016.03.035

Hammond, G. y Jones, C. (2008). Inventory of carbon & energy: ICE (Vol. 5). Bath: Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath.

Harkouss, F., Fardoun, F. y Biwole, P. H. (2019). Optimal design of renewable energy solution sets for net zero energy buildings. Energy, 179, 1155–1175. DOI: https://doi.org/10.1016/j.energy.2019.05.013

Heffernan, E., Pan, W., Liang, X. y de Wilde, P. (2015). Zero carbon homes: Perceptions from the UK construction industry. Energy Policy, 79(2015), 23–36. DOI: https://doi.org/10.1016/j.enpol.2015.01.005

Hermelink, A., Schimschar, S., Boermans, T., Pagliano, L., Zangheri, P., Armani, R., … Musall, E. (2013). Towards nearly zero- energy buildings definition of common principles under the EPBD Final report. Recuperado de http://Ec.Europa.Eu/Energy/Efficiency/Buildings/Doc/Nzeb_full_report.Pdf.

Hernández Moreno, S. (2008). El herramienta para el desarrollo de la arquitectura y edificación diseño sustentable como en México. Acta Universitaria, Dirección de Investigación y Posgrado, Universidad de Guanajuato, 18(2), 18–23. DOI: https://doi.org/10.15174/au.2008.143

Hernandez, P. y Kenny, P. (2010a). From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy and Buildings, 42(6), 815–821. DOI: https://doi.org/10.1016/J.ENBUILD.2009.12.001

Honorable Congreso de la Nación Argentina (2017). LEY 27424 - Régimen De Fomento A La Generación Distribuida De Energía Renovable Integrada A La Red Eléctrica Pública. Boletin Oficial de la República Argentina. Recuperado de http://servicios.infoleg.gob.ar/infolegInternet/anexos/305000-309999/305179/norma.htm

Huang, P. y Sun, Y. (2019). A clustering based grouping method of nearly zero energy buildings for performance improvements. Applied Energy, 235(November), 43–55. DOI: https://doi.org/10.1016/j.apenergy.2018.10.116

Ibn-Mohammed, T. (2017). Application of mixed-mode research paradigms to the building sector : A review and case study towards decarbonising the built and natural environment. Sustainable Cities and Society, 35(September), 692–714. https://doi.org/10.1016/j.scs.2017.09.027

International Energy Agency (IEA) (2008). Promoting Energy Efficiency Investments: Case Studies in the Residential Sector. París: OECD Publishing. DOI: https://doi.org/10.1787/9789264042155-en.

International Energy Agency (IEA) (2015). Solar heating and cooling programme. Task 40 (EBC Annex 52) Towards Net Zero Energy Solar Buildings. Recuperado de http://task40.iea-shc.org/Data/Sites/1/publications/IEA-SHC-NZEB-Position-Paper.pdf

International Panel for Climate Change (IPCC) (2018). Grupo intergubernamental de expertos sobre el cambio climático (IPCC). Comunicado de prensa 2018/24/PR, 1–5.

IRAM (2017). IRAM 11900. Prestaciones energéticas en viviendas. Método de cálculo y etiquetado de eficiencia energética.

Javanmard, M. E., Ghaderi, S. F. y Sangari, M. S. (2020). Integrating energy and water optimization in buildings using multi-objective mixed-integer linear programming. Sustainable Cities and Society, 62(March), 102409. DOI: https://doi.org/10.1016/j.scs.2020.102409

Jovanovic, J., Sun, X., Stevovic, S. y Chen, J. (2017). Energy-efficiency gain by combination of PV modules and Trombe wall in the low-energy building design. Energy and Buildings, 152, 568–576. DOI: https://doi.org/10.1016/j.enbuild.2017.07.073

Jusselme, T., Rey, E. y Andersen, M. (2018). An integrative approach for embodied energy : Towards an LCA -based data- driven design method. Renewable and Sustainable Energy Reviews, 88(March), 123–132. DOI: https://doi.org/10.1016/j.rser.2018.02.036

Justo Alonso, M., Liu, P., Mathisen, H. M., Ge, G. y Simonson, C. (2015). Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Building and Environment, 84, 228–237. DOI: https://doi.org/10.1016/j.buildenv.2014.11.014

Kalbasi, R., Ruhani, B. y Rostami, S. (2019). Energetic analysis of an air handling unit combined with enthalpy air ‑ to ‑ air heat exchanger. Journal of Thermal Analysis and Calorimetry, 139(4), 2881-2890 DOI: https://doi.org/10.1007/s10973-019-09158-9

Kilkis, S. (2007). A new metric for net- zero carbon buildings. Proceedings of Energy Sustainability, 36263, 27–30. Recuperado de http://proceedings.asmedigitalcollection.asme.org/ on 02/02/2016.

Kosai, S. y Tan, C. (2017). Quantitative analysis on a zero energy building performance from energy trilemma perspective. Sustainable Cities and Society, 32(February), 130–141. DOI: https://doi.org/10.1016/j.scs.2017.03.023

Kylili, A. y Fokaides, P. A. (2015). European smart cities: The role of zero energy buildings. Sustainable Cities and Society, 15, 86–95. DOI: https://doi.org/10.1016/J.SCS.2014.12.003

Lamnatou, C., Motte, F., Notton, G., Chemisana, D. y Cristofari, C. (2018). Building-integrated solar thermal system with/without phase change material: Life cycle assessment based on ReCiPe, USEtox and Ecological footprint. Journal of Cleaner Production, 193, 672–683. DOI: https://doi.org/10.1016/j.jclepro.2018.05.032

Lausten, J. (2008). Energy Efficiency requirements in building codes, Energy Efficiency policies for new buildings. International Energy Agency Information Paper. Sweden. Recuperado de https://www.osti.gov/etdeweb/servlets/purl/971038

Li, D. H. W. W., Yang, L. y Lam, J. C. (2013). Zero energy buildings and sustainable development implications e A review. Energy, 54, 1–10. DOI: https://doi.org/10.1016/J.ENERGY.2013.01.070

Liu, Z., Li, W., Chen, Y., Luo, Y. y Zhang, L. (2019). Review of energy conservation technologies for fresh air supply in zero energy buildings. Applied Thermal Engineering, 148(November), 544–556. DOI: https://doi.org/10.1016/j.applthermaleng.2018.11.085

Lobaccaro, G., Wiberg, A. H., Ceci, G., Manni, M., Lolli, N. y Berardi, U. (2018). Parametric design to minimize the embodied GHG emissions in a ZEB. Energy and Buildings, 167, 106–123. DOI: https://doi.org/10.1016/j.enbuild.2018.02.025

Lund, H., Alberg, P., Connolly, D. y Vad, B. (2017). Smart energy and smart energy systems. Energy, 137, 556–565. DOI: https://doi.org/10.1016/j.energy.2017.05.123

Luo, Y., Zhang, L., Liu, Z., Yu, J., Xu, X. y Su, X. (2020). Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system. Applied Energy, 258(September), 114066. DOI: https://doi.org/10.1016/j.apenergy.2019.114066

Marszal, A. y Heiselberg, P. (2015). A literature review of Zero Energy Buildings (ZEB) definitions. DCE Technical Report N° 78. Department of Civil Engineering, Aalborg University. Recuperado de https://vbn.aau.dk/ws/portalfiles/portal/18915080/A_Literature_Review_of_Zero_Energy_Buildings__ZEB__Definitions

Marszal, A. J., Heiselberg, P., Bourrelle, J. S., Musall, E., Voss, K., Sartori, I. y Napolitano, A. (2011). Zero Energy Building – A review of definitions and calculation methodologies. Energy and Buildings, 43(4), 971–979. DOI: https://doi.org/10.1016/J.ENBUILD.2010.12.022

Mertz, G. A., Raffio, G. S. y Kissock K. (2007). Cost Optimization of Net-Zero Energy House. Energy Sustainability, 477-487. DOI: https://doi.org/10.1115/ES2007-36077

Ministerio de Ambiente y Energía (MINAE) (2015). Reglamento Generación Distribuida para Autoconsumo con Fuentes Renovables.Modelo de Contratación Medición Neta Sencilla. O. C. No 24673.—Solicitud No 7118.—(D39220-IN2015065290). Cartago, Costa Rica.

Ministerio de Energía (2018). Ley 21118. Modifica La Ley General de Servicios Eléctricos, con el fin de incentivar el desarrollo de las generadoras residenciales. Santiago, Chile. Recuperado de http://bcn.cl/2epdj

Mlecnik, E. (2012). Defining nearly zero-energy housing in Belgium and the Netherlands. Energy Efficiency, 5(3), 411–431. DOI: https://doi.org/10.1007/s12053-011-9138-2

Moga, L. y Bucur, A. (2018). Nano insulation materials for application in nZEB. En 11th International Conference Interdisciplinarity in Engineering, INTER-ENG 2017, 5-6 October 2017, Tirgu-Mures, Romania 2017, Tirgu-Mures, Romania (Vol. Procedia M, pp. 309–316). Elsevier B.V. DOI: https://doi.org/10.1016/j.promfg.2018.03.047

Moschetti, R., Brattebø, H. y Sparrevik, M. (2019). Exploring the pathway from zero-energy to zero-emission building solutions : A case study of a Norwegian office building. Energy & Buildings, 188–189, 84–97. DOI: https://doi.org/10.1016/j.enbuild.2019.01.047

Nicol, J. F. y Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings, Energy and buildings, 34(6), 563–572.

Osseweijer, F. J. W., Van Den Hurk, L. B. P., Teunissen, E. J. y Van Sark W. G. (2018). A comparative review of building integrated photovoltaics ecosystems in selected European countries. Renewable and Sustainable Energy Reviews, 90(April), 1027–1040. DOI: https://doi.org/10.1016/j.rser.2018.03.001

Pacheco-Torgal, F. (2014). Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and Building Materials, 51(2014), 151–162. DOI: https://doi.org/10.1016/j.conbuildmat.2013.10.058

Parlamento Europeo y del Consejo. (2018). Directiva (UE) 2018/844 del Parlamento Europeoy del Consejo de 30 de mayo de 2018 por la que se modifica la Directiva 2010/31/UE relativa a la eficiencia energética de los edificios y la Directiva 2012/27/UE relativa a la eficiencia energética. Diario Oficial de La Unión Europea, L 156/75, 75–91.

Petersdorff, C., Boermans, T. y Harnisch, J. (2006). Mitigation of CO2 Emissions from the EU-15 Building Stock Beyond the EU Directive on the Energy Performance of Buildings. Environmental Science and Pollution Research, 13(5), 350–358. DOI: https://doi.org/10.1065/espr2005.12.289

Piderit, M., Vivanco, F., van Moeseke, G., & Attia, S. (2019). Net Zero Buildings—A Framework for an Integrated Policy in Chile. Sustainability, 11(5), 1494. DOI: https://doi.org/10.3390/su11051494

Rehman, H., Reda, F., Paiho, S. y Hasan, A. (2019). Towards positive energy communities at high latitudes. Energy Conversion and Management, 196(March), 175–195. DOI: https://doi.org/10.1016/j.enconman.2019.06.005

Rodríguez Manrique, A. K., Kobiski, B. V. y Fassi Casagrande Jr., E. (2014). La Oficina verde, proyecto de la Universidad Tecnológica Federal de Paraná: su desempeño a nivel tecnológico y su impacto en el sector académico, privado y público. Revista Hábitat Sustentable, 4(1), 3–13.

Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., … y Vilariño, M. V. (2018). Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Recuperado de https://www.ipcc.ch/report/sr15/

Sartori, I., Napolitano, A. y Voss, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232. DOI: https://doi.org/10.1016/j.enbuild.2012.01.032

Seljom, P., Byskov, K., Tomasgard, A., Doorman, G. y Sartori, I. (2017). The impact of Zero Energy Buildings on the Scandinavian energy system. Energy, 118, 284–296. DOI: https://doi.org/10.1016/j.energy.2016.12.008

Seo, S., Passer, A., Zelezna, J. y Hajek, P. (2016). International Energy Agency- Evaluation of embodies Energy and CO2eq for building Construction (Annex 57) Overview of Annex 57 Results. Recuperado de http://www.ieaebc.org/Data/publications/EBC_Annex_57_Results_Overview.pdf.

Taleghani, M., Tenpierik, M., Kurvers, S. y Van den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201–215. DOI: https://doi.org/10.1016/j.rser.2013.05.050

Torcellini, P., Pless, S. y Deru, M. (2006). Zero Energy Buildings: A Critical Look at the Definition. Conference Paper en National Renewable Energy Laboratory (June). Recuperado de https://www.nrel.gov/docs/fy06osti/39833.pdf

United Nations Environment Programme - Sustainable Buildings & Climate Initiative (UNEP-SBCI). (2009). Buildings and Climate Change: a Summary for Decision-Makers. París: UNEP-DTIE Sustainable Consumption & Production Branch.

U.S. Department of Energy & The National Institute of Building Sciences (2015). A Common Definition for Zero Energy Buildings. U.S. Department of Energy, (September). Recuperado de https://www.buildings.energy.gov

Ürge-Vorsatz, D., Harvey, L. D. D., Mirasgedis, S. y Levine, M. D. (2007). Mitigating CO2 emissions from energy use in the world’s buildings. Building Research & Information, 35(4), 379–398. DOI: https://doi.org/10.1080/09613210701325883

Vares, S., Häkkinen, T., Ketomäki, J., Shemeikka, J. y Jung, N. (2019). Impact of renewable energy technologies on the embodied and operational GHG emissions of a nearly zero energy building. Journal of Building Engineering, 22(December), 439–450. DOI: https://doi.org/10.1016/j.jobe.2018.12.017

Vargas Gil, G. M., Bittencourt Aguiar Cunha, R., Giuseppe Di Santo, S., Machado Monaro, R., Fragoso Costa, F. y Sguarezi Filho, A. J. (2020). Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems. Renewable Energy, 162, 1307–1320. DOI: https://doi.org/10.1016/j.renene.2020.08.022

Volf, M., Lupíšek, A., Bureš, M., Nováček, J., Hejtmánek, P. y Tywoniak, J. (2018). Application of building design strategies to create an environmentally friendly building envelope for nearly zero-energy buildings in the central European climate. Energy and Buildings, 165, 35–46. DOI: https://doi.org/10.1016/j.enbuild.2018.01.019

Wei, W., Wargocki, P., Zirngibl, J., Bendžalová, J. y Mandin, C. (2020). Review of parameters used to assess the quality of the indoor environment in Green Building certification schemes for offices and hotels. Energy and Buildings, 209, 109683. DOI: https://doi.org/10.1016/j.enbuild.2019.109683

Xing, R., Hanaoka, T., Kanamori, Y. y Masui, T. (2018). Achieving zero emission in China’s urban building sector: opportunities and barriers. Current Opinion in Environmental Sustainability, 30, 115–122. DOI: https://doi.org/10.1016/j.cosust.2018.05.005

Zhiqiang J., Zhai J. y Helman M. (2019). Implications of climate changes to

building energy and design. Sustainable Cities and Society, 44, 511-519.

Publicado

2020-12-31

Cómo citar

D’Amanzo, M., Mercado, M. V. ., & Ganem-Karlen, C. . (2020). 10 preguntas de los edificios energía cero: revisión del estado del arte. Hábitat Sustentable, 10(2), 24 - 41. https://doi.org/10.22320/07190700.2020.10.02.02

Número

Sección

Artículos