10 preguntas de los edificios energía cero: revisión del estado del arte
DOI:
https://doi.org/10.22320/07190700.2020.10.02.02Palavras-chave:
edificios, ZEB, sustentabilidad, eficiencia energéticaResumo
Los Edificios Energía Cero o ZEB (Zero Energy Buildings) promueven una mirada integral de la arquitectura sustentable y un cambio profundo en la manera de construir. La investigación y el desarrollo en transición energética deben necesariamente enfrentarse a problemas tecnológicos y socioeconómicos. En esa línea, la meta aquí es ofrecer una respuesta para minimizar el impacto energético y ambiental del sector edilicio. Se realizó, para ello, una revisión del estado del arte de la temática, donde se seleccionaron 97 artículos científicos considerados de mayor relevancia, en el período de 2006 a 2020. La metodología consistió en un análisis de esos textos a partir de diez preguntas formuladas para abordar la temática: sus orígenes, estado actual y proyecciones futuras en relación a la eficiencia energética y la sustentabilidad. Las preguntas hacen referencia a definiciones (P1), sustentabilidad (P2), tecnologías involucradas (P3), emisiones (P5), energía (P4) (P6) (P7), normativas (P8), cambio climático (P9) y proyecciones futuras (P10). El trabajo permite concluir que los ZEB se integran de manera holística en la transformación hacia un futuro renovable y sustentable en materia de soluciones energéticas y, a su vez, tienen potencialidad para ser implementados en diferentes posiciones geográficas y climáticas.
Downloads
Referências
Attia, S. (2016). Towards regenerative and positive impact architecture: A comparison of two net zero energy buildings. Sustainable Cities and Society, 26, 393–406. DOI: https://doi.org/10.1016/j.scs.2016.04.017
Attia, S. (2018). Chapter 2: Evolution of Definitions and Approaches. En Attia, S. Net Zero Energy Buildings (NZEB) (pp. 21–51). DOI: https://doi.org/10.1016/b978-0-12-812461-1.00002-2
Azzouz, A., Borchers, M., Moreira, J. y Mavrogianni, A. (2017). Life cycle assessment of energy conservation measures during early stage office building design: A case study in London, UK. Energy and Buildings, 139, 547–568. DOI: https://doi.org/10.1016/j.enbuild.2016.12.089
Belausteguigoitia Garaizar, J., Laurenz Senosiain, J. y Gómez Telletxea, A. (2010). El reto de los edificios ZERO: el siguiente paso de la arquitectura sostenible. SB10mad Sustainable Building Conference, 10. Recuperado de http://www.sb10mad.com/ponencias/archivos/d/D007.pdf
Berardi, U. (2018). ZEB and nZEB (definitions, design methodologies, good practices, and case studies). En Desideri, U. y Asdrubali, F. (Eds.), Handbook of Energy Efficiency in Buildings: A Life Cycle Approach (pp. 88-116). Elsevier Inc.
Booth, S., Barnett, J., Burman, K., Hambrick, J. y Westby, R. (2010). Net Zero Energy Military Installations: A Guide to Assessment and Planning. NREL Technical Report, (August). Recuperado de https://www.osti.gov/biblio/986668
Bordoloi, N., Sharma, A., Nautiyal, H.y Goel, V. (2018). An intense review on the latest advancements of Earth Air Heat Exchangers. Renewable and Sustainable Energy Reviews, 89(April), 261–280. DOI: https://doi.org/10.1016/j.rser.2018.03.056
Brambilla, A., Salvalai, G., Imperadori, M. y Sesana, M. M. (2018). Nearly zero energy building renovation: From energy efficiency to environmental efficiency, a pilot case study. Energy and Buildings, 166, 271–283. DOI: https://doi.org/10.1016/j.enbuild.2018.02.002
Buso, T., Becchio, C. y Corgnati, S. P. (2017). NZEB, cost- and comfort-optimal retrofit solutions for an Italian Reference Hotel. Energy Procedia, 140, 217–230. DOI: https://doi.org/10.1016/j.egypro.2017.11.137
Calvente, A. (2007). Resiliencia: un concepto clave para la sustentabilidad. Programa de Difusión e Investigación en Sustentabilidad, Centro de Altos Estudios Globales, Universidad Abierta Interamericana. Buenos Aires. Recuperado de http://www.sustentabilidad.uai.edu.ar/pdf/cs/UAIS-CS-200-003%20-%20Resiliencia.pdf
Cao, X., Dai, X. y Liu, J. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and Buildings, 128, 198–213. DOI: https://doi.org/10.1016/j.enbuild.2016.06.089
Carlucci, S., Causone, F., Pagliano, L. y Pietrobon, M. (2017). Zero-Energy Living Lab En Littlewood, J., Spataru, C., Howlett, R. y L. Jain, L. (Eds.). Smart Energy Control Systems for Sustainable Buildings (pp. 1-35). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-52076-6_1
Carpino, C., Mora, D., Arcuri, N. y De Simone, M. (2017). Behavioral variables and occupancy patterns in the design and modeling of Nearly Zero Energy Buildings. Building Simulation, 10(6), 875–888. DOI: https://doi.org/10.1007/s12273-017-0371-2
Causone, F., Tatti, A., Pietrobon, M., Zanghirella, F. y Pagliano, L. (2019). Energy & Buildings Yearly operational performance of a nZEB in the Mediterranean climate. Energy & Buildings, 198, 243–260. DOI: https://doi.org/10.1016/j.enbuild.2019.05.062
Chai, J., Huang, P. y Sun, Y. (2019). Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions. Energy, 185, 176–189. DOI: https://doi.org/10.1016/j.energy.2019.07.055
Chastas, P., Theodosiou, T., Kontoleon, K. J. y Bikas, D. (2018). Normalising and assessing carbon emissions in the building sector : A review on the embodied CO2 emissions of residential buildings. Building and Environment, 130(December 2017), 212–226. DOI: https://doi.org/10.1016/j.buildenv.2017.12.032
Chen, T. y Norford, L. (2020). Energy performance of next-generation dedicated outdoor air cooling systems in low-energy building operations. Energy and Buildings, 209. DOI: https://doi.org/10.1016/j.enbuild.2019.109677
Comisión Europea (2010). Directiva 2010/31/UE relativa a la eficiencia energética de los edificios. Boletin Oficial, L135, 13–35.
Congedo, P. M., Baglivo, C., Zacà, I. y D’Agostino, D. (2015). High performance solutions and data for nZEBs offices located in warm climates. Data in Brief, 5(2015), 502–505. DOI: https://doi.org/10.1016/j.dib.2015.09.041
Crawley, D., Pless, S. y Torcellini, P. (2009). Getting to Net Zero. ASHRAE Journal, 51(9), 18-25.
D’Agostino, D. (2016). Synthesis Report on the National Plans for Nearly Zero Energy Buildings ( NZEBs ). Progress of Member States towards NZEBs. DOI: https://doi.org/10.2790/659611
D’Agostino, D. y Parker, D. (2020). A framework for the cost-optimal design of nearly zero energy buildings ( NZEBs ) in representative climates across Europe. Energy, 149, 814–829. DOI: https://doi.org/10.1016/j.energy.2018.02.020
D’Agostino, D., Marino, C., Minichiello, F. y Russo, F. (2017). Obtaining a NZEB in Mediterranean climate by using only on-site renewable energy: Is it a realistic goal? Energy Procedia, 140, 23–35. DOI: https://doi.org/10.1016/j.egypro.2017.11.120
D’Amanzo, M., Mercado, M. V. y Ganem Karlen, C. (2019). Edificios de Energía Cero, Cero Neta y Casi Nula: Revisión de normativa y perspectivas futuras para países en vías de desarrollo. En XI Congreso Regional de Tecnología de la Arquitectura (pp. 1–11). Mar del Plata, Buenos Aires, Argentina.
De Gisi, S., Casella, P., Notarnicola, M. y Farina, R. (2016). Grey water in buildings: a mini-review of guidelines, technologies and case studies. Civil Engineering and Environmental Systems, 33(1), 35–54. DOI: https://doi.org/10.1080/10286608.2015.1124868
Debbarma, M., Sudhakar, K. y Baredar, P. (2017). Resource-Efficient Technologies Comparison of BIPV and BIPVT: A review. Resource-Efficient Technologies, 3(3), 263-271. DOI: https://doi.org/10.1016/j.reffit.2016.11.013
Deng, S., Wang, R. Z. y Dai, Y. J. (2014). How to evaluate performance of net zero energy building - A literature research. Energy, 71, 1–16. DOI: https://doi.org/10.1016/j.energy.2014.05.007
Deru, M., Griffith, B. y Torcellini, P. (2006). Establishing Benchmarks for DOE Commercial Building R & D and Program Evaluation Preprint. (No. NREL/CP-550-39834). National Renewable Energy Lab. (NREL), Golden, CO (United States).
Energía Estratégica (2020). Datos por país: En todos los mercados latinoamericanos crece la generación distribuida. 24 de agosto de 2020. Recuperado de https://www.energiaestrategica.com
Fernández, A., Garzón, B. S. y Elsinger, D. (2020). Incidencia de las estrategias pasivas de diseño arquitectónico en la etiqueta de eficiencia energética en Argentina. Revista Hábitat Sustentable, 10(1), 56–67. DOI: https://doi.org/10.22320/07190700.2020.10.01.05 HS
Ferrara, M., Lisciandrello, C., Messina, A., Berta, M., Zhang, Y. y Fabrizio, E. (2020). Optimizing the transition between design and operation of ZEBs: Lessons learnt from the Solar Decathlon China 2018 SCUTxPoliTo prototype. Energy and Buildings, 213. DOI: https://doi.org/10.1016/j.enbuild.2020.109824
Finnegan, S., Jones, C. y Sharples, S. (2018). The embodied CO2e of sustainable energy technologies used in buildings: A review article. Energy and Buildings, 181, 50–61. DOI: https://doi.org/10.1016/j.enbuild.2018.09.037
Fjola, T., Houlihan-wiberg, A., Andresen, I., Georges, L., Heeren, N., Stina, C. y Brattebø, H. (2018). Is a net life cycle balance for energy and materials achievable for a zero emission single-family building in Norway ? Energy and Buildings, 168, 457–469. DOI: https://doi.org/10.1016/j.enbuild.2018.02.046
Flores-Larsen, S., Filippín, C. y Barea, G. (2019). Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy and Buildings, 184(December), 216–229. DI: https://doi.org/10.1016/j.enbuild.2018.12.015
Garde, F., Lenoir, A., Scognamiglio, A., Aelenei, D., Waldren, D., Rostvik, H. N., … y Cory, S. (2014). Design of net zero energy buildings: Feedback from international projects. Energy Procedia, 61, 995-998. DOI: https://doi.org/10.1016/j.egypro.2014.11.1011
Good, C., Andresen, I. y Hestnes, A. G. (2015). Solar energy for net zero energy buildings - A comparison between solar thermal, PV and photovoltaic-thermal (PV/T) systems. Solar Energy, 122, 986-996. DOI: https://doi.org/10.1016/j.solener.2015.10.013
Guillén-Lambea, S., Rodríguez-Soria, B. y Marín, J. M. (2017). Comfort settings and energy demand for residential nZEB in warm climates. Applied Energy, 202, 471–486. DOI: https://doi.org/10.1016/j.apenergy.2017.05.163
Häkämies, S., Hirvonen, J., Jokisalo, J., Knuuti, A., Kosonen, R., Niemelä, T., …y Pulakka, S. (2015). Heat pumps in energy and cost efficient nearly zero energy buildings in Finland. Finlandia: JULKAISIJA – UTGIVARE – PUBLISHER,
Hamdy, M., Nguyen, A. T. y Hensen, J. L. M. (2016). A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy and Buildings, 121, 57–71. DOI: https://doi.org/10.1016/j.enbuild.2016.03.035
Hammond, G. y Jones, C. (2008). Inventory of carbon & energy: ICE (Vol. 5). Bath: Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath.
Harkouss, F., Fardoun, F. y Biwole, P. H. (2019). Optimal design of renewable energy solution sets for net zero energy buildings. Energy, 179, 1155–1175. DOI: https://doi.org/10.1016/j.energy.2019.05.013
Heffernan, E., Pan, W., Liang, X. y de Wilde, P. (2015). Zero carbon homes: Perceptions from the UK construction industry. Energy Policy, 79(2015), 23–36. DOI: https://doi.org/10.1016/j.enpol.2015.01.005
Hermelink, A., Schimschar, S., Boermans, T., Pagliano, L., Zangheri, P., Armani, R., … Musall, E. (2013). Towards nearly zero- energy buildings definition of common principles under the EPBD Final report. Recuperado de http://Ec.Europa.Eu/Energy/Efficiency/Buildings/Doc/Nzeb_full_report.Pdf.
Hernández Moreno, S. (2008). El herramienta para el desarrollo de la arquitectura y edificación diseño sustentable como en México. Acta Universitaria, Dirección de Investigación y Posgrado, Universidad de Guanajuato, 18(2), 18–23. DOI: https://doi.org/10.15174/au.2008.143
Hernandez, P. y Kenny, P. (2010a). From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy and Buildings, 42(6), 815–821. DOI: https://doi.org/10.1016/J.ENBUILD.2009.12.001
Honorable Congreso de la Nación Argentina (2017). LEY 27424 - Régimen De Fomento A La Generación Distribuida De Energía Renovable Integrada A La Red Eléctrica Pública. Boletin Oficial de la República Argentina. Recuperado de http://servicios.infoleg.gob.ar/infolegInternet/anexos/305000-309999/305179/norma.htm
Huang, P. y Sun, Y. (2019). A clustering based grouping method of nearly zero energy buildings for performance improvements. Applied Energy, 235(November), 43–55. DOI: https://doi.org/10.1016/j.apenergy.2018.10.116
Ibn-Mohammed, T. (2017). Application of mixed-mode research paradigms to the building sector : A review and case study towards decarbonising the built and natural environment. Sustainable Cities and Society, 35(September), 692–714. https://doi.org/10.1016/j.scs.2017.09.027
International Energy Agency (IEA) (2008). Promoting Energy Efficiency Investments: Case Studies in the Residential Sector. París: OECD Publishing. DOI: https://doi.org/10.1787/9789264042155-en.
International Energy Agency (IEA) (2015). Solar heating and cooling programme. Task 40 (EBC Annex 52) Towards Net Zero Energy Solar Buildings. Recuperado de http://task40.iea-shc.org/Data/Sites/1/publications/IEA-SHC-NZEB-Position-Paper.pdf
International Panel for Climate Change (IPCC) (2018). Grupo intergubernamental de expertos sobre el cambio climático (IPCC). Comunicado de prensa 2018/24/PR, 1–5.
IRAM (2017). IRAM 11900. Prestaciones energéticas en viviendas. Método de cálculo y etiquetado de eficiencia energética.
Javanmard, M. E., Ghaderi, S. F. y Sangari, M. S. (2020). Integrating energy and water optimization in buildings using multi-objective mixed-integer linear programming. Sustainable Cities and Society, 62(March), 102409. DOI: https://doi.org/10.1016/j.scs.2020.102409
Jovanovic, J., Sun, X., Stevovic, S. y Chen, J. (2017). Energy-efficiency gain by combination of PV modules and Trombe wall in the low-energy building design. Energy and Buildings, 152, 568–576. DOI: https://doi.org/10.1016/j.enbuild.2017.07.073
Jusselme, T., Rey, E. y Andersen, M. (2018). An integrative approach for embodied energy : Towards an LCA -based data- driven design method. Renewable and Sustainable Energy Reviews, 88(March), 123–132. DOI: https://doi.org/10.1016/j.rser.2018.02.036
Justo Alonso, M., Liu, P., Mathisen, H. M., Ge, G. y Simonson, C. (2015). Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Building and Environment, 84, 228–237. DOI: https://doi.org/10.1016/j.buildenv.2014.11.014
Kalbasi, R., Ruhani, B. y Rostami, S. (2019). Energetic analysis of an air handling unit combined with enthalpy air ‑ to ‑ air heat exchanger. Journal of Thermal Analysis and Calorimetry, 139(4), 2881-2890 DOI: https://doi.org/10.1007/s10973-019-09158-9
Kilkis, S. (2007). A new metric for net- zero carbon buildings. Proceedings of Energy Sustainability, 36263, 27–30. Recuperado de http://proceedings.asmedigitalcollection.asme.org/ on 02/02/2016.
Kosai, S. y Tan, C. (2017). Quantitative analysis on a zero energy building performance from energy trilemma perspective. Sustainable Cities and Society, 32(February), 130–141. DOI: https://doi.org/10.1016/j.scs.2017.03.023
Kylili, A. y Fokaides, P. A. (2015). European smart cities: The role of zero energy buildings. Sustainable Cities and Society, 15, 86–95. DOI: https://doi.org/10.1016/J.SCS.2014.12.003
Lamnatou, C., Motte, F., Notton, G., Chemisana, D. y Cristofari, C. (2018). Building-integrated solar thermal system with/without phase change material: Life cycle assessment based on ReCiPe, USEtox and Ecological footprint. Journal of Cleaner Production, 193, 672–683. DOI: https://doi.org/10.1016/j.jclepro.2018.05.032
Lausten, J. (2008). Energy Efficiency requirements in building codes, Energy Efficiency policies for new buildings. International Energy Agency Information Paper. Sweden. Recuperado de https://www.osti.gov/etdeweb/servlets/purl/971038
Li, D. H. W. W., Yang, L. y Lam, J. C. (2013). Zero energy buildings and sustainable development implications e A review. Energy, 54, 1–10. DOI: https://doi.org/10.1016/J.ENERGY.2013.01.070
Liu, Z., Li, W., Chen, Y., Luo, Y. y Zhang, L. (2019). Review of energy conservation technologies for fresh air supply in zero energy buildings. Applied Thermal Engineering, 148(November), 544–556. DOI: https://doi.org/10.1016/j.applthermaleng.2018.11.085
Lobaccaro, G., Wiberg, A. H., Ceci, G., Manni, M., Lolli, N. y Berardi, U. (2018). Parametric design to minimize the embodied GHG emissions in a ZEB. Energy and Buildings, 167, 106–123. DOI: https://doi.org/10.1016/j.enbuild.2018.02.025
Lund, H., Alberg, P., Connolly, D. y Vad, B. (2017). Smart energy and smart energy systems. Energy, 137, 556–565. DOI: https://doi.org/10.1016/j.energy.2017.05.123
Luo, Y., Zhang, L., Liu, Z., Yu, J., Xu, X. y Su, X. (2020). Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system. Applied Energy, 258(September), 114066. DOI: https://doi.org/10.1016/j.apenergy.2019.114066
Marszal, A. y Heiselberg, P. (2015). A literature review of Zero Energy Buildings (ZEB) definitions. DCE Technical Report N° 78. Department of Civil Engineering, Aalborg University. Recuperado de https://vbn.aau.dk/ws/portalfiles/portal/18915080/A_Literature_Review_of_Zero_Energy_Buildings__ZEB__Definitions
Marszal, A. J., Heiselberg, P., Bourrelle, J. S., Musall, E., Voss, K., Sartori, I. y Napolitano, A. (2011). Zero Energy Building – A review of definitions and calculation methodologies. Energy and Buildings, 43(4), 971–979. DOI: https://doi.org/10.1016/J.ENBUILD.2010.12.022
Mertz, G. A., Raffio, G. S. y Kissock K. (2007). Cost Optimization of Net-Zero Energy House. Energy Sustainability, 477-487. DOI: https://doi.org/10.1115/ES2007-36077
Ministerio de Ambiente y Energía (MINAE) (2015). Reglamento Generación Distribuida para Autoconsumo con Fuentes Renovables.Modelo de Contratación Medición Neta Sencilla. O. C. No 24673.—Solicitud No 7118.—(D39220-IN2015065290). Cartago, Costa Rica.
Ministerio de Energía (2018). Ley 21118. Modifica La Ley General de Servicios Eléctricos, con el fin de incentivar el desarrollo de las generadoras residenciales. Santiago, Chile. Recuperado de http://bcn.cl/2epdj
Mlecnik, E. (2012). Defining nearly zero-energy housing in Belgium and the Netherlands. Energy Efficiency, 5(3), 411–431. DOI: https://doi.org/10.1007/s12053-011-9138-2
Moga, L. y Bucur, A. (2018). Nano insulation materials for application in nZEB. En 11th International Conference Interdisciplinarity in Engineering, INTER-ENG 2017, 5-6 October 2017, Tirgu-Mures, Romania 2017, Tirgu-Mures, Romania (Vol. Procedia M, pp. 309–316). Elsevier B.V. DOI: https://doi.org/10.1016/j.promfg.2018.03.047
Moschetti, R., Brattebø, H. y Sparrevik, M. (2019). Exploring the pathway from zero-energy to zero-emission building solutions : A case study of a Norwegian office building. Energy & Buildings, 188–189, 84–97. DOI: https://doi.org/10.1016/j.enbuild.2019.01.047
Nicol, J. F. y Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings, Energy and buildings, 34(6), 563–572.
Osseweijer, F. J. W., Van Den Hurk, L. B. P., Teunissen, E. J. y Van Sark W. G. (2018). A comparative review of building integrated photovoltaics ecosystems in selected European countries. Renewable and Sustainable Energy Reviews, 90(April), 1027–1040. DOI: https://doi.org/10.1016/j.rser.2018.03.001
Pacheco-Torgal, F. (2014). Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and Building Materials, 51(2014), 151–162. DOI: https://doi.org/10.1016/j.conbuildmat.2013.10.058
Parlamento Europeo y del Consejo. (2018). Directiva (UE) 2018/844 del Parlamento Europeoy del Consejo de 30 de mayo de 2018 por la que se modifica la Directiva 2010/31/UE relativa a la eficiencia energética de los edificios y la Directiva 2012/27/UE relativa a la eficiencia energética. Diario Oficial de La Unión Europea, L 156/75, 75–91.
Petersdorff, C., Boermans, T. y Harnisch, J. (2006). Mitigation of CO2 Emissions from the EU-15 Building Stock Beyond the EU Directive on the Energy Performance of Buildings. Environmental Science and Pollution Research, 13(5), 350–358. DOI: https://doi.org/10.1065/espr2005.12.289
Piderit, M., Vivanco, F., van Moeseke, G., & Attia, S. (2019). Net Zero Buildings—A Framework for an Integrated Policy in Chile. Sustainability, 11(5), 1494. DOI: https://doi.org/10.3390/su11051494
Rehman, H., Reda, F., Paiho, S. y Hasan, A. (2019). Towards positive energy communities at high latitudes. Energy Conversion and Management, 196(March), 175–195. DOI: https://doi.org/10.1016/j.enconman.2019.06.005
Rodríguez Manrique, A. K., Kobiski, B. V. y Fassi Casagrande Jr., E. (2014). La Oficina verde, proyecto de la Universidad Tecnológica Federal de Paraná: su desempeño a nivel tecnológico y su impacto en el sector académico, privado y público. Revista Hábitat Sustentable, 4(1), 3–13.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., … y Vilariño, M. V. (2018). Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Recuperado de https://www.ipcc.ch/report/sr15/
Sartori, I., Napolitano, A. y Voss, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232. DOI: https://doi.org/10.1016/j.enbuild.2012.01.032
Seljom, P., Byskov, K., Tomasgard, A., Doorman, G. y Sartori, I. (2017). The impact of Zero Energy Buildings on the Scandinavian energy system. Energy, 118, 284–296. DOI: https://doi.org/10.1016/j.energy.2016.12.008
Seo, S., Passer, A., Zelezna, J. y Hajek, P. (2016). International Energy Agency- Evaluation of embodies Energy and CO2eq for building Construction (Annex 57) Overview of Annex 57 Results. Recuperado de http://www.ieaebc.org/Data/publications/EBC_Annex_57_Results_Overview.pdf.
Taleghani, M., Tenpierik, M., Kurvers, S. y Van den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201–215. DOI: https://doi.org/10.1016/j.rser.2013.05.050
Torcellini, P., Pless, S. y Deru, M. (2006). Zero Energy Buildings: A Critical Look at the Definition. Conference Paper en National Renewable Energy Laboratory (June). Recuperado de https://www.nrel.gov/docs/fy06osti/39833.pdf
United Nations Environment Programme - Sustainable Buildings & Climate Initiative (UNEP-SBCI). (2009). Buildings and Climate Change: a Summary for Decision-Makers. París: UNEP-DTIE Sustainable Consumption & Production Branch.
U.S. Department of Energy & The National Institute of Building Sciences (2015). A Common Definition for Zero Energy Buildings. U.S. Department of Energy, (September). Recuperado de https://www.buildings.energy.gov
Ürge-Vorsatz, D., Harvey, L. D. D., Mirasgedis, S. y Levine, M. D. (2007). Mitigating CO2 emissions from energy use in the world’s buildings. Building Research & Information, 35(4), 379–398. DOI: https://doi.org/10.1080/09613210701325883
Vares, S., Häkkinen, T., Ketomäki, J., Shemeikka, J. y Jung, N. (2019). Impact of renewable energy technologies on the embodied and operational GHG emissions of a nearly zero energy building. Journal of Building Engineering, 22(December), 439–450. DOI: https://doi.org/10.1016/j.jobe.2018.12.017
Vargas Gil, G. M., Bittencourt Aguiar Cunha, R., Giuseppe Di Santo, S., Machado Monaro, R., Fragoso Costa, F. y Sguarezi Filho, A. J. (2020). Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems. Renewable Energy, 162, 1307–1320. DOI: https://doi.org/10.1016/j.renene.2020.08.022
Volf, M., Lupíšek, A., Bureš, M., Nováček, J., Hejtmánek, P. y Tywoniak, J. (2018). Application of building design strategies to create an environmentally friendly building envelope for nearly zero-energy buildings in the central European climate. Energy and Buildings, 165, 35–46. DOI: https://doi.org/10.1016/j.enbuild.2018.01.019
Wei, W., Wargocki, P., Zirngibl, J., Bendžalová, J. y Mandin, C. (2020). Review of parameters used to assess the quality of the indoor environment in Green Building certification schemes for offices and hotels. Energy and Buildings, 209, 109683. DOI: https://doi.org/10.1016/j.enbuild.2019.109683
Xing, R., Hanaoka, T., Kanamori, Y. y Masui, T. (2018). Achieving zero emission in China’s urban building sector: opportunities and barriers. Current Opinion in Environmental Sustainability, 30, 115–122. DOI: https://doi.org/10.1016/j.cosust.2018.05.005
Zhiqiang J., Zhai J. y Helman M. (2019). Implications of climate changes to
building energy and design. Sustainable Cities and Society, 44, 511-519.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2020 María Victoria Mercado, Micaela D'Amanzo, Carolina Ganem Karlen
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-CompartilhaIgual 4.0.
O conteúdo dos artigos publicados em cada número do Habitat Sustentável é da exclusiva responsabilidade dos autores e não representa necessariamente o pensamento ou compromete a opinião da Universidad del Bío-Bío.
Os autores mantêm os seus direitos de autor e concedem à revista o direito de primeira publicação da sua obra, que está simultaneamente sujeita à Licença de Atribuição Creative Commons CC BY-SA que permite a outros partilhar, transformar ou criar novo material a partir desta obra para fins não comerciais, desde que a autoria e a primeira publicação nesta revista sejam reconhecidas, e as suas novas criações sejam licenciadas sob os mesmos termos.