Digital manufacturing taxonomy for architecture

Authors

DOI:

https://doi.org/10.22320/07196466.2025.43.068.03

Keywords:

Taxonomy, Digital Fabrication, Project Classification, Homo Faber

Abstract

This article presents the Taxonomy for Digital Fabrication (TDFab+Arch), a tool developed to categorize and compare projects materialized through digital fabrication. In this article, TDFab+Arch has been applied to the Homo Faber (HF) catalogs, which bring together digital fabrication projects in Latin America from 2015 to 2022, and a comparison has been made between the techniques used by these projects. The structuring of the taxonomy was based on systematic literature reviews that identified criteria in the design processes, resulting in four categories: "design aspects," "machinery," "materials," and "surface topology." The methodology used in this article is "constructive research" as described by Kasanen et al. (1993) and Lukka (2003), which involves three phases of the process: understanding the project, proposing a solution, and validating the taxonomy. This methodology facilitates an understanding of the application of the taxonomy as a mode of classification, contributing to the advancement of knowledge in the field. The article presents the projects through text and images, making it easier to identify relevant aspects. TDFab+Arch stands out for its flexibility and versatility, making it suitable for cataloging project design. The taxonomy generates various visualization types, allowing designers to explore the criteria according to their specific needs. Qualitative content analysis and the structuring of the taxonomy were essential for organizing the techniques, materials, and equipment involved in digital fabrication, promoting a clearer understanding of the field. As a result, TDFab+Arch allows the designer to explore the criteria from different perspectives and gain a more comprehensive understanding of the projects. The taxonomy is an adaptable and customizable tool, allowing users to understand the criteria used in the development of each project.

Downloads

Download data is not yet available.

Author Biographies

Bárbara Felipe, Federal University of Rio Grande do Norte, Natal, Brazil

Doctor of Architecture and Urban Planning. Professor of architecture.

Carlos Nome, Federal University of Paraíba, João Pessoa, Brazil

Doctor of Architecture. Associate Professor, Department of Architecture and Urban Planning.

References

AGUDELO, L.-M., NADEAU, J.-P., PAILHES, J., & MEJÍA-GUTIÉRREZ, R. (2017). A taxonomy for product shape analysis to integrate in early environmental impact estimations. International Journal on Interactive Design and Manufacturing (IJIDeM), 11(2), 397–413. https://doi.org/10.1007/s12008-016-0337-0

ASHBY, M. F. (2013). Materials and the Environment. Eco-informed Material Choice. Butterworth-Heinemann.

ASHBY, M. F., SHERCLIFF, H., & CEBON, D. (2019). Materials: Engineering, science, processing and design. Katey Birtcher.

AUSTERN, G., CAPELUTO, I. G., & GROBMAN, Y. J. (2018). Rationalization methods in computer aided fabrication: A critical review. Automation in Construction, 90, 281–293. https://doi.org/10.1016/j.autcon.2017.12.027

BAX, T., & TRUM, H. (2000). A Building Design Process Model - According to Domain Theory in H. H. Achten, B. de Vries, & J. M. Hennessey (Eds.), Design Research in the Netherlands 2000 (p. 19–30). Technische Universiteit Eindhoven.

BAX, T., & TRUM, H. (2002). Faculties of Architecture. Version, 64–75.

CAPONE, M., & LANZARA, E. (2018). Kerf bending: Ruled double curved surfaces manufacturing. XXII congresso da sociedade iberoamericana de gráfica digital. https://papers.cumincad.org/data/works/att/sigradi2018_1389.pdf

CAPONE, M., & LANZARA, E. (2019). Parametric Kerf Bending: Manufacturing double curvature surfaces for wooden furniture design in F. Bianconi & M. Filippucci (Eds.), Digital Wood Design. Innovative Techniques of Representation in Architectural Design (pp. 415–439). Springer Cham. https://doi.org/10.1007/978-3-030-03676-8

CHUA, C. K., LEONG, K. F., & LIM, C. S. (2003). Fundamentals of Rapid Prototyping in C. K. Chua, K. F. Leong, & C. S. Lim, Rapid Prototyping: Principles and Applications (pp. 11-13). World Scientific Publishing Co. Pte. Ltd.

COOPER, K. G. (2001). Rapid Prototyping Technology: Selection and Application. CRC Press

DUNN, N. (2012). Digital Fabrication in Architecture. Laurence King Publishing.

GEBHARDT, A. (2011). Understanding Additive Manufacturing. Rapid Prototyoing - Rapid Tooling - Rapid Manufacturing. Hanser Publishers. https://doi.org/10.3139/9783446431621

GRIZ, C., QUEIROZ, N., & NOME, C. (2017). Edificação Modular: Estudo de caso e protótipo de um sistema construtivo de código aberto utilizando prototipagem rápida. SIGraDi 2017. Actas del XXI Congreso de la Sociedad Iberoamericana de Gráfica Digital, Concepción, Chile. https://papers.cumincad.org/data/works/att/sigradi2017_043.pdf

HERRERA, P. C. (2024). Machine Not Homed: Growth and Perspectives on Digital Fabrication Made in Latin America in G. Canizares, & Z. Cohen (Eds.), Homing the Machine in Architecture (1st edition, pp. 2010–2237). Routledge.

HERRERA, P. C., SCHEEREN, R., & SPERLING, D. M. (2023). Homo Faber 3.0: Appropriations of Digital Fabrication from Latin America 2022. Editorial Universidad Peruana de Ciencias Aplicadas (UPC). https://doi.org/10.19083/978-612-318-462-9

IWAMOTO, L. (2009). Digital Fabrications: Architectural and Material Techniques. Princeton Architectural Press.

KASANEN, E., LUKKA, K., & SIITONEN, A. (1993). The Constructive Approach in Management Accounting Research. Journal of Management Accounting Research, 5, 243–264.

LANZARA, E. (2015). Paneling Complex Surfaces. Razionalizzazione di superfici complesse per l'industrializzazione [Doctoral thesis, Università degli Studi di Napoli Federico II]. FedOA Università degli Studi di Napoli Federico II Open Archive. https://doi.org/10.6092/UNINA/FEDOA/10453

LUKKA, K. (2003). The Constructive Research Approach in L. Ojala, & O.-P. Hilmola (Eds.), Case study research in logistics (p. 83–101). Turku School of Economics and Business Administration.

PUPO, R. T. (2008). Ensino da prototipagem rápida e fabricação digital para arquitetura e construção no Brasil: definições e estado da arte. PARC Pesquisa em Arquitetura e Construção, 1(3), 80-98. https://doi.org/10.20396/parc.v1i3.8634511

SASS, L., & BOTHA, M. (2006). The Instant House: A Model of Design Production with Digital Fabrication. International Journal of Architectural Computing, 4(4), 109–123. https://doi.org/10.1260/147807706779399015

SCHEEREN, R. (2022). Fabricação digital na América do Sul: Laboratórios, estratégias, processos e artefatos para o design, a arquitetura e a construção [Doctoral thesis, Universidade de São Paulo]. Digital Library USP. https://doi.org/10.11606/T.102.2021.TDE-05042022-173034

SCHEEREN, R., HERRERA, P. C., & SPERLING, D. M. (Eds.). (2018). Homo Faber 2.0. Politics of Digital in Latin America. Instituto de Arquitetura e Urbanismo

SCHEEREN, R., & SPERLING, D. M. (2024). In between revolutions or the state of digital fabrication technologies in South America academia: a systematic and critical review. Blucher Design Proceedings, 12(3), 551–562. https://doi.org/10.5151/sigradi2023-467

SPERLING, D. M., & HERRERA POLO, P. C. (2015). Homo Faber Digital Fabrication in Latin Ameri-ca CAAD Futures 2015 the next city. Instituto de Arquitectura y Urbanismo de São Carlos. http://hdl.handle.net/10757/605203

TRUM, H. M. G. J., & BAX, M. F. T. (1996). The taxonomy of concepts in architecture: some applications and developments. Open House International, 21(1), 4–14. https://pure.tue.nl/ws/files/3123905/Metis250169.pdf

VROUWE, I. (2018). Sensemaking in Construction. The Necessity of Making [Doctoral thesis, Katholieke Universiteit Leuven]. Ivo Vrouwe | WorkShop IV. https://ivovrouwe.net/thesis/

Downloads

Published

2025-10-01

How to Cite

Felipe, B., & Nome, C. (2025). Digital manufacturing taxonomy for architecture. ARQUITECTURAS DEL SUR, 43(68), 46–65. https://doi.org/10.22320/07196466.2025.43.068.03

Issue

Section

Article