Effect of mechanical treatment on properties of cellulose nanofibrils produced from bleached hardwood and softwood pulps
Keywords:
Cellulose nanofibrils, Supermasscolloider, South African, TGA, transmission electron microscopy, XRD.Abstract
Bleached hardwood and softwood South African kraft pulps were passed through a commercially available micro grinder for varying number of passes and the properties of the resultant pulps were assessed periodically using microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray crystallography (XRD) and Thermogravimetric analysis (TGA). The ultrastructural analysis of the pulp fibres revealed that after 120 passes both hardwood and softwood bleached fibres showed the presence of cellulose nanofibres (CNFs). The FTIR analysis showed no modification to the cellulose structure and side groups upon treatment with the supermasscolloider (SMC). Both hardwood and softwood pulp fibres showed a decline in crystallinity after SMC treatment. For the hardwood pulps there were no major differences between the untreated pulps and those passed through the SMC. In the case of the softwood pulps, the SMC treatment resulted in more thermally stable CNFs compared with the untreated bleached pulps. This was observed at several levels of treatment (40, 120 and 200 passes). After 200 passes both the hardwood and softwood kraft pulp fibres produced CNFs with an average width of 11 nm and lengths with several micrometers.Downloads
References
Abe, K.; Iwamoto, S.; Yano, H. 2007. Obtaining cellulose nanofibres with a uniform width of 15 nm from wood. Biomacromolecules 8:3276-3278.
Andresen, M.; Stenius, P. 2007. Water‐in‐oil emulsions stabilized by hydrophobized microfibrillated cellulose. Journal of Dispersion Science and Technology 28:837-844.
Betts, R.A.; Cox, P.M.; Lee, S.E.; Woodward, F.L. 1997. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796-799.
Chakraborty, A.; Sain, M.; Kortschot, M. 2005. Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102-107.
Clemons, C.; Sedlmair, J.; Illman, B.; Ibach, R.; Hirschmugl, C. 2013. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly (acrylic acid) in poly (vinyl alcohol). Polymer 54:2058-2061.
Dufresne, A.; Dupeyre, D.; Vignon, M.R. 2000. Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. Journal of Applied Polymer Science 76:2080-2092.
Eichhorn, S.J. 2011. Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303-315.
Ferrer, A.; Filpponen, I.; Rodríguez, A.; Laine, J.; Rojas, O.J. 2012. Valorization of residual Empty Palm Fruit Bunch Fibres (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresource Technology 125:249-255.
Frone, A.N.; Panaitescu, D.M.; Donescu, D. 2011. Some aspects concerning the isolation of cellulose micro-and nano-fibres. UPB Buletin Stiintific, Series B: Chemistry and Materials Science 73:133-152.
Gibril, M.E.; Li, X.D.; Zhang, Y.; Han, K.Q.; Yu, M.H. 2014. Green Process for Preparing Cellulose/Reactive Epoxy (BGE) through an In Situ Chemical Blend (Pre-Hybrid Polymer Bio-Composite). Advanced Materials Research 842:39-42.
Iwamoto, S.; Abe, K.; Yano, H. 2008. The effect of hemicelluloses on wood pulp nanofibrillation and nanofibre network characteristics. Biomacromolecules 9:1022-1026.
Johnson, R.K.; Zink-Sharp, A.; Renneckar, S.H.; Glasser, W.G. 2009. A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227-238.
Jonoobi, M.; Harun, J.; Tahir, P.M.; Shakeri, A.; Saifulazry, S.; Makinejad, M.D. 2011. Physicochemical characterization of pulp and nanofibres from kenaf stem. Materials Letters 65:1098-1100.
Kalia, S.; Boufi, S.; Celli, A.; Kango, S. 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 292:5-31.
Khalil, H.P.S.A.; Davoudpour, Y.; Islam, M.N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. 2014. Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate Polymers 99:649-665.
Kiaei, M.; Tajik, M.; Vaysi, R. 2014. Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas-Cienc Tecnol 16(3):313-322.
Lee, S.Y.; Chun, S.J.; Kang, I.A.; Park, J.Y. 2009. Preparation of cellulose nanofibrils by highpressure homogenizer and cellulose-based composite films. Journal of Industrial and Engineering Chemistry 15:50-55.
Malherbe, S.; Cloete, T.E. 2002. Lignocellulose biodegradation: fundamentals and applications. Reviews in Environmental Science and Biotechnology 1:105-114.
Mathews, S.L.; Pawlak, J.; Grunden, A.M. 2015. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology and Biotechnology 99:2939-2954.
Mtibe, A.; Linganiso, L.Z.; Mathew, A.P.; Oksman, K.; John, M.J.; Anandjiwala, R.D. 2015. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydrate Polymers 118:1-8.
Nogi, M.; Handa, K.; Nakagaito, A.N.; Yano, H. 2005. Optically transparent bionanofibre composites with low sensitivity to refractive index of the polymer matrix. Applied Physics Letters 87(24).
Panthapulakkal, S.; Sain, M. 2012. Preparation and characterization of cellulose nanofibril films from wood fibre and their thermoplastic polycarbonate composites. International Journal of Polymer Science: doi:10.1155/2012/381342.
Paralikar, S.A.; Simonsen, J.; Lombardi, J. 2008. Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science 320:248-258.
Qing, Y.; Sabo, R.; Zhu, J.; Agarwal, U.; Cai, Z.; Wu, Y. 2013. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers 97:226-234.
Qua, E.; Hornsby, P.; Sharma, H.; Lyons, G. 2011. Preparation and characterisation of cellulose nanofibres. Journal of Materials Science 46:6029-6045.
Qua, E.; Hornsby, P.; Sharma, H.; Lyons, G.; Mccall, R. 2009. Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibres. Journal of Applied Polymer Science 113:2238-2247.
Segal, L.; Creely, J.; Martin, A.; Conrad, C. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29:786-79.
Siró, I.; Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459-494.
Spence, K.L.; Venditti, R.A.; Rojas, O.J.; Habibi, Y.; Pawlak, J.J. 2011. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097-1111.
Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P. 2011. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. Journal of Nanoparticle Research 13:773-782.
Tonoli, G.; Teixeira, E.; Corrêa, A.; Marconcini, J.; Caixeta, L.; Pereira-da-Silva, M.; Mattoso, L. 2012. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydrate Polymers 89:80-88.
Turbak, A.F.; Snyder, F.W.; Sandberg, K.R. 1983. Microfibrillated cellulose. US Patent No 4,374,702A. 22 Feb. 1983
Wang, Q.; Zhu, J.; Gleisner, R.; Kuster, T.; Baxa, U.; Mcneil, S. 2012. Morphological development of cellulose fibrils of a bleached Eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631-1643.
Yousefi, H.; Faezipour, M.; Hedjazi, S.; Mousavi, M.M.; Azusa, Y.; Heidari, A.H. 2013. Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibres and fibres/ground cellulose nanofibres of canola straw. Industrial Crops and Products 43:732-737.