Ultrasonido y anisotropía en madera de Thuja plicata y Acer saccharum

Authors

  • Javier Ramón Sotomayor-Castellanos
  • José María Villaseñor-Aguilar

Keywords:

Densidad, ensayos no destructivos, módulo de elasticidad, propiedades de la madera, velocidad de onda, Density, modulus of elasticity, non-destructive tests, wave speed, wood properties.

Abstract

La velocidad del ultrasonido en la madera y el módulo de elasticidad, siguen un patrón anisotrópico, que se infiere mediante un modelo teórico. El objetivo de la investigación fue determinar la variación de la velocidad del ultrasonido y del módulo de elasticidad en el plano longitudinal-tangencial en la madera de Thuja plicata y Acer saccharum. Se estudiaron 32 probetas de cada especie diseñadas específicamente para la investigación. Se calcularon la velocidad del ultrasonido y el módulo de elasticidad en diez posiciones en el plano longitudinal-tangencial. Los resultados experimentales se contrastaron con las previsiones del modelo de anisotropía propuesto. Para la madera de T. plicata y A. saccharum, las velocidades de ultrasonido fueron para la dirección longitudinal 5610 m/s y 5935 m/s y para la dirección tangencial 1198 m/s y 1372 m/s. Los módulos de elasticidad en la dirección longitudinal fueron 11126 MPa y 24688 MPa y para la dirección tangencial 530 MPa y 1320 MPa.

The ultrasound speed and the modulus of elasticity of the wood material follow an anisotropic behavior predicted by a theoretical model. The goal of the research was to determine the variation of the ultrasound speed and the modulus of elasticity over the longitudinal-tangential plane of Thuja plicata and Acer saccharum wood. For each species, 32 wood specimens were tested. The ultrasound speed and the modulus of elasticity were calculated in ten positions over the longitudinal-tangential plane. Experimental results were contrasted with the predictions of the proposed anisotropy model. For the T. plicata and A. saccharum woods, the ultrasound speeds were, for the longitudinal direction 5610 m/s and 5935 m/s, and for the tangential direction 1198 m/s y 1372 m/s. The moduli of elasticity were, for the longitudinal direction 11126 MPa and 24688 MPa, and for the tangential direction 530 MPa and 1320 MPa.

Downloads

Download data is not yet available.

References

Armstrong, J.P.; Patterson, D.W.; Sneckenberger, J.E. 1991. Comparison of three equations for predicting stress wave velocity as a function of grain angle. Wood and Fiber Science 23(1):32-43.

Brémaud, I. 2012a. Acoustical properties of wood in string instruments soundboards and tuned idiophones: Biological and cultural diversity. Journal of the Acoustical Society of America 131(1):807-818.

Brémaud, I. 2012b. What do we know on “resonance wood” properties? Selective review and ongoing research. Societe Francaise d’Acoustique. Proceedings of the Acoustics 2012. Nantes Conference: 2759-2764.

Brémaud, I.; El Kaïm, Y.; Guibal, D.; Minato, M.; Thibaut, B.; Gril, J. 2012. Characterization and categorization of the diversity in viscoelastic vibrational properties between 98 wood types. Annals of Forest Science 69(3):373-386.

Brémaud, I.; Gril, J.; Thibaut, B. 2011. Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data. Wood Science and Technology 45(4):735-754.

Bucur, V. 2006. Acoustics of wood. Springer-Verlag, Berlin.

Bucur, V.; Declercq, N. 2006. The anisotropy of biological composites studied with ultrasonic technique. Ultrasonics 44:829-831.

De Oliveira, F.G.R.; Candian, M.; Lucchette, F.F.; Salgon, J.L.; Sales, A. 2005. A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra). Building and Environment 40(2):297-300.

Forest Products Laboratory. 2010. Wood handbook-Wood as an engineering material. General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest Service. Forest Products Laboratory. Madison.

Gonçalves, R.; Trinca, A.J.; Dos Santos Ferreira, G.C. 2011. Effect of coupling media on velocity and attenuation of ultrasonic waves in Brazilian wood. Journal of Wood Science 57(4):282-287.

Gonçalves, R.; Trinca, A.J.; Pellis, B.P. 2014. Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology 48(2):269-287.

Hasegawa, M.; Takata, M.; Matsumura, J.; Oda, K. 2011. Effect of wood properties on withintree variation in ultrasonic wave velocity in softwood. Ultrasonics 51(3):296-302.

International Organization for Standardization. ISO. 2014a. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 1: Determination of moisture content for physical and mechanical tests. ISO 13061-1:2014. ISO Catalog 79 Wood technology; 79.040 Wood, sawlogs and saw timber. Brussels.

International Organization for Standardization. ISO. 2014b. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. ISO 13061-2:2014. ISO Catalog 79 Wood technology; 79.040 Wood, sawlogs and saw timber. Brussels.

Kabir, M.F. 2001. Prediction of Ultrasonic Properties from Grain Angle. Journal of the Institute of Wood Science 15(5):235-246.

Keunecke, D.; Sonderegger, W.; Pereteanu, K.; Lüthi, T.; Niemz, P. 2007. Determination of young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Science and Technology 41(4):309-327.

Kránitz, K.; Deublein, M.; Niemz, P. 2014. Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices. Materials and Structures 47(6):925-936.

Mackerle, J. 2005. Finite element analyses in wood research: a bibliography. Wood Science and Technology 39(7):579-600.

Nadir, Y.; Nagarajan, P.; Midhun, A.J. 2014. Measuring elastic constants of Hevea brasiliensis using compression and Iosipescu shear test. European Journal of Wood and Wood Products 72(6):749-758.

Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology 47(2):329-341.

Pellerin, R.F.; Ross, R.J. 2002. Nondestructive Evaluation of Wood. Forest Products Society. Peachtree Corners. 210 p.

Se Golpayegani, A.; Brémaud, I.; Gril, J.; Thevenon, M-F.; Arnould, O.; Pourtahmasi, K. 2012. Effect of extractions on dynamic mechanical properties of white mulberry (Morus alba). Journal of Wood Science 58(2):153-162.

Sonderegger, W.; Martienssen, A.; Nitsche, C.; Ozyhar, T.; Kaliske, M.; Niemz, P. 2013. Investigations on the physical and mechanical behavior of sycamore maple (Acer pseudoplatanus L.). European Journal of Wood and Wood Products 71(1):91-99.

Sotomayor Castellanos, J.R.; Guridi Gomez, L.I.; Garcia Moreno, T. 2010. Características acústicas de la madera de 152 especies mexicanas. Velocidad del ultrasonido, módulo de elasticidad, índice material y factor de calidad. Base de datos. Investigación e Ingeniería de la Madera 6(1):3-32.

Sotomayor Castellanos, J.R.; Ramírez Pérez, M. 2013. Densidad y características higroscópicas de maderas mexicanas. Base de datos y criterios de clasificación. Investigación e Ingeniería de la Madera 9(3):3-29.

Sotomayor Castellanos, J.R.; Ramírez Pérez, M. 2014. Características físicas de 12 maderas mexicanas. Investigación e Ingeniería de la Madera 10(1):4-35.

Tankut, N.; Tankut, A.N.; Zor, M. 2014. Finite Element Analysis of Wood Materials. Drvna Industrija 65(2):159-171.

Vázquez, C.; Gonçalves, R.; Bertoldo, C.; Baño, V.; Vega, A.; Crespo, J.; Guaita, M. 2015. Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Science and Technology 49(3):607-622.

Wegst, U.G.K. 2006. Wood for sound. American Journal of Botany 93(10):1439-1448. Xu, H.; Xu, G.; Wang, L.; Yu, L. 2014. Propagation behavior of acoustic wave in wood. Journal of Forestry Research 25(3):671-676.

Yanagida, H.; Tamura, Y.; Kim, K.M.; Lee, J.J. 2007. Development of Ultrasonic Time-of-Flight Computed Tomography for Hard Wood with Anisotropic Acoustic Property. Japanese Journal of Applied Physics 46(8A):5321-5325.

Yoshikawa, S. 2007. Acoustical classification of woods for string instruments. Journal of the Acoustical Society of America 122(1):568-573.

Downloads

Published

2016-06-27

How to Cite

Sotomayor-Castellanos, J. R., & Villaseñor-Aguilar, J. M. (2016). Ultrasonido y anisotropía en madera de Thuja plicata y Acer saccharum. Maderas-Cienc Tecnol, 18(3), 467–476. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/2449

Issue

Section

Article