CO2 adsorption on agricultural biomass combustion ashes


  • Sebastián Lira-Zúñiga
  • César Sáez-Navarrete
  • Leonardo Rodríguez-Córdova
  • Leandro Herrera-Zeppelin
  • Ronaldo Herrera-Urbina


Bottom ash, CO2 capture, fly ash, pellet, wheat bran.


Carbon capture and storage has become an alternative means of confronting global warming. Further research and development into adequate and low-cost materials is required for CO2 adsorption technologies.

Samples of fly ash, bottom ash and their respective pellets, produced from wheat bran combustion, were characterized and tested to assess their capacity for CO2 adsorption at different temperatures. Neither the ashes nor their pellets were subject to prior thermochemical activation.

The bottom ash sample and its pellets showed a higher adsorption capacity for the majority of the temperatures studied. The pelletized bottom ash reached the maximum adsorption capacity (0,07 mmol CO2/g), followed by the non-pelletized bottom ash (0,06 mmol CO2/g); both at an adsorption temperature of 25°C.

CO2 adsorption of bottom ash, from the combustion of wheat bran (agricultural biomass), by a physical adsorption mechanism was demonstrated whereas with the fly ash sample, CO2 adsorption by both physical and chemical adsorption mechanisms was identified.


Download data is not yet available.


ACAA. 2012. Coal Combustion Products Survey. [online]< Files/PDFs/revisedFINAL2012CCPSurveyReport.pdf>[november 11th 2013].

Amaya, J.T.A.; Sánchez, F. 2006. Employing fly ash and FCC catalyser waste in recovering chrome (III) from liquid effluent emitted by tanneries. Ingeniería e Investigación 25(57):39-48.

Arenillas, A.; Smith, K.M.; Drage, T.C.; Snape, C.E. 2005. CO2 capture using some fly ashderived carbon materials. Fuel 84(17): 2204-2210.

Barrett, E.; Joyner, L.; Halenda, P. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 73(1):373-380.

Boumediene, M.; Benaïssa, H.; George, B.; Molina, S.; Merlin, A. 2015. Characterization of two cellulosic waste materials (orange and almond peels) and their use for the removal of methylene blue from aqueous solutions. Maderas. Ciencia y tecnología 17(1):69-84.

Brunauer, S.; Emmett, P.; Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60(2):309-319.

Castañeda, J. 2012. Estudio de las propiedades de trasporte en materiales porosos mediante espectroscopía infrarrojo con trasformada de fourier (FTIR). Tesis de magister en ciencias Facultad de Ciencias, Escuela de Química. Medellin, Universidad Nacional de Colombia.

Chen-Hsiu, Y.; Chih-Hung, H.; Chung-Sung, T. 2012. A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research 12: 745-769.

Da Gama, C.; Navarro-Torres, V.; Falcao-Neves, A. 2010. Techological innovations on underground coal gasification and CO2 sequestration. DYNA 77:101-108.

ECOBA. 2007. Coala Combustion Product. Production and Survey. 2013.[online] [11 november 2013].

Gerdemann, S. J.; O’Connor, W. K.; Dahlin, D.C.; Penner, L.R.; Rush, H. 2007. Ex Situ Aqueous Mineral Carbonation. Environmental Science & Technology 41(7):2587-2593.

Hong, J.K.; Jo, H.Y.; Yun, S.T. 2009. Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions. Journal of Hazardous Materials 164(1):235-246.

Hoyos-Barreto, A. E.; Jiménez-Correa, M.; Ortiz-Muñoz, M.A.; Montes de Correa, C. 2008. Tecnologías para la reducción de emisiones de gases contaminantes en plantas cementeras. Ingeniería e Investigación 28:41-46.

Lopez-Anton, M.A.; Perry, R.; Abad-Valle, P.; Díaz-Somoano, M.; Martínez-Tarazona, M.R.; Maroto-Valer, M.M. 2011. Speciation of mercury in fly ashes by temperature programmed decomposition. Fuel Processing Technology 92(3):707-711.

Malik, A.; Thapliyal, A. 2009. Eco-friendly Fly Ash Utilization: Potential for Land Application. Critical Reviews in Environmental Science and Technology 39(4):333-366.

Maroto-Valer, M.; Lu, Z.; Zhang, Y.; Tang, Z. 2008. Sorbents for CO2 capture from high carbon fly ashes. Waste Management 28(11):2320-2328.

Maroto-Valer, M.M.; Tang, Z.; Zhang, Y. 2005. CO2 capture by activated and impregnated anthracites. Fuel Processing Technology 86(14-15):1487-1502.

Pevida, C.; Plaza, M.G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J.J. 2008. Surface modification of activated carbons for CO2 capture. Applied Surface Science 254(22): 7165-7172.

Ríos, C.A.; Williams, C.D.; Roberts, C.L. 2009. A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites. Fuel 88(8):1403-1416.

Sanz, A. 2012. Diseño de ciclos PSA para la captura de gases de combustión con adsorbentes comerciales. Tesis Doctoral. Departamento de Ingeniería Química. Universidad Complutense de Madrid. Madrid.

Sayari, A. 2010. Stabilization of Amine-Containing CO2 Adsorbents: Dramatic Effect of Water Vapor. Journal of the American Chemical Society 132(18):6312-6314.

Torres-Fuchslocher, C.; Varas-Concha, F. 2015. Desing and efficiency of a small-scale woochip furnace. Maderas. Ciencia y Tecnología 17(2):355-364.

Vassilev, S.V. 2005. Methods for Characterization of Composition of Fly Ashes from Coal-Fired Power Stations: A Critical Overview. Energy & Fuels 19(3):1084-1098.

Wilcox, J. 2012. Carbon Capture. New York, Springer.

Xu, X.; Song, C.; Andresen, J.M.; Miller, B.G.; Scaroni, A.W. 2002. Novel Polyethylenimine- Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture. Energy & Fuels 16(6):1463-1469.

Yong, Z.; Mata, V.; Rodrigues, A.R.E. 2002. Adsorption of carbon dioxide at high temperature a review. Separation and Purification Technology 26(2-3):195-205.

Yue, M.B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J.H. 2006. CO2 Capture by As-Prepared SBA-15 with an Occluded Organic Template. Advanced Functional Materials 16(13):1717-1722.


How to Cite

Lira-Zúñiga, S., Sáez-Navarrete, C., Rodríguez-Córdova, L., Herrera-Zeppelin, L., & Herrera-Urbina, R. (2016). CO2 adsorption on agricultural biomass combustion ashes. Maderas-Cienc Tecnol, 18(4), 607–616. Retrieved from