Thermal analysis of oriental beech sawdust treated with some commercial wood preservatives
Keywords:
Differential-thermogravimetry, Fagus orientalis, thermogravimetric analysis, differential-thermal analysis, residual char.Abstract
In this study, investigation of the thermal properties of Oriental beech (Fagus orientalis) sawdust treated with 0,25; 1 and 4,70% aqueous solutions of Adolit KD-5, Wolmanit CX- 8 and Tanalit-E were performed by using thermogravimetric analysis, differential-thermal analysis, and differential-thermal analysis under argon atmosphere. Results were compared with the untreated wood (control). It was found that the treatment with Adolit KD-5, Wolmanit CX- 8 and Tanalit-E decreased the Tmax (maximum degradation temperature) and increased residual char amount with respect to the control sample. Increases in the concentration of applied preservatives promote the char formation. It was found that the char content after pyrolysis experiment had good agreement with the boric acid amount in wood preservatives.Downloads
References
Ahmed, S.A.; Morén, T. 2012. Moisture properties of heat-treated Scots pine and Norway spruce sapwood impregnated with wood preservatives. Wood and Fiber Science 44(1): 85-93.
Ajuong, E.; Pinion, L.C. 2010. Corrosion and degradation of engineering materials. In Shreir’s Corrosion, Editor-in-Chief: Tony J.A. Richardson, Elsevier Science Ltd, pp. 2439-2446.
Archer, K.; Preston, A. 2006. An overview of copper based wood preservatives. Wood protection 2006. [online] <http://www.forestprod.org/wood protection06archer.pdf>[cited ]
Baysal, E. 2002. Determination of oxygen index levels and thermal analysis of Scots pine (Pinus sylvestris L.) impregnated with melamine formaldehyde-boron combinations. Journal of Fire Sciences 20(5): 373-389.
Bhat, I.U.H.; Abdul Khalil, H.P.S.; Awang, K.B.; Bakare, I.O.; Issam, A.M. 2010. Effect of weathering on physical, mechanical and morphological properties of chemically modified wood materials. Materials and Design 31(9): 4363-4368.
Brosse, N.; EL Hage, R.; Chaouch, M.; Pétrissans, M.; Dumarçay, S.; Gérardin, P. 2010. Investigation of the chemical modifications of beech wood lignin during heat treatment. Polymer Degradation and Stability 95(9): 1721-1726.
Chandrasekaran, S.R.; Hopke, P.K. 2012. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres. Bioresource Technology 125: 52-58.
Deka, M.; Saikia, C.N.; Baruah, K.K. 2002. Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresource Technology 84(2): 151-157.
Di Blasi, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science 34(1): 47-90.
Esteves, B.; Pereira, H. 2008. Wood modification by heat treatment: A review. BioResources 4: 370-404.
Freeman, M.H.; Mcintyre, C.R. 2008. Copper-based wood preservatives. Forest Products Journal 58(11): 6-27.
Gao, M.; Zhu, K.; Sun, Y.G. 2004. Thermal degradation of wood treated with amino resisns and amino resins modified with phosphate in nitrogen. Journal of Fire Sciences 22: 505-515.
Gao, M.; Ling, B.; Yang, S.; Zhao, M. 2005. Flame retardance of wood treated with guanidine compounds characterized by thermal degradation behavior. Journal of Analytical and Applied Pyrolysis 73(1): 151-156.
Helsen, L.; Van den Bulck, E. 2005. Review of disposal technologies for chromated copper arsenate (CCA) treated wood waste, with detailed analyses of thermochemical conversion processes. Environmental Pollution 134(2): 301-314.
Jiang, J.; Li, J.; Hu, J.; Fan, D. 2010. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Construction and Building Materials 24(12): 2633-2637.
Jiang, J.; Li, J.; Gao, Q. 2015. Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Construction and Building Materials 75: 74-81.
Kiziltas, A.; Gardner, D.J.; Han, Y.; Yang, H.S. 2011. Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochimica Acta 519(1): 38-43.
Lesar, B.; Pavlič, M.; Petrič, M.; Škapin, A.S.; Humar, M. 2011. Wax treatment of wood slows photodegradation. Polymer Degradation and Stabilization 96(7): 1271-1278.
Liodakis, S.; Bakirtzis, D.; Dimitrakopoulos, A.P. 2003. Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochimica Acta 399(1): 31-42.
Lowden, L.A.; Hull, T.R. 2013. Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews 2(1): 1-19.
Mourant, D.; Yang, D.Q.; Riedl, B.; Roy, C. 2008. Mechanical properties of wood treated with PF-pyrolytic oil resins. Holz als Roh- und Werkstoff 66(3): 163-171.
Palanti S, Predieri G., Casoli A., Vignali F., Feci E 2008 New preservatives based on copper chelates and copper complexes grafted to functionalized silica gel, Cost Action E37 Final Conference in Bordeaux 2008, Socio-economic perspectives of treated wood for the common European market, 23-29.
Palanti, S.; Predieri, G.; Vignali, F.; Feci, E.; Casoli, A.; Conti, E. 2011. Copper complexes grafted to functionalized silica gel as wood preservatives against the brown rot fungus Coniophora puteana. Wood Science and Technology 45(4): 707-718.
Poncsák, S.; Kocaefe, D.; Bouazara, M.; Pichette, A. 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Science and Technology 40(8): 647-
Salca, E.A.; Hiziroglu, S. 2014. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Materials and Design 62: 416-423.
Salman, S.; Pétrissans, A.; Thévenon, M.F.; Dumarcay, S.; Perrin, D.; Pollier, B.; Gérardin, P. 2014. Development of new wood treatments combining boron impregnation and thermo modification: effect of additives on boron leachability. European Journal of Wood and Wood Products 72(3): 355- 365.
Sevim, F.; Demir, F.; Bilen, M.; Okur, H. 2006. Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean Journal of Chemical Engineering 23(5): 736-740.
Sinha, S.; Jhalani, A.; Ravi, M.; Ray, A. 2000. Modelling of pyrolysis in wood: A review. SESI Journal 10: 1-17.
Tomak, E.D.; Baysal, E.; Peker, H. 2012. The effect of some wood preservatives on the thermal degradation of Scots pine. Thermochimica Acta 547: 76-82.
Tsujiyama, S.I.; Miyamori, A. 2000. Assignment of DSC thermograms of wood and its components. Thermochimica Acta 351(1): 177-181.
Turkoglu, T.; Baysal, E.; Toker, H. 2015. The effects of natural weathering on color stability of impregnated and varnished wood materials. Advances in Materials Science and Engineering vol. 2015, Article ID 526570: 1-9.
Uner, I.H.; Deveci, I.; Baysal, E.; Turkoglu, T.; Toker, H.; Peker, H. 2016. Thermal analysis of Oriental beech wood treated with some borates as fire retardants. Maderas- Cienc Tecnol 18(2): 293-304.
Wang, Q.; Li, J.; Wınandy, J. E. 2004. Chemical mechanism of fire retardance of boric acid on wood. Wood Science and Technology 38(5): 375-389.
White, R.H.; Dietenberger, M.A. 2001. Wood products: thermal degradation and fire. In Encyclopedia of Materials: Science and Technology, Editors-in-Chief: K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernard Ilschner, Edward J. Kramer, Subhash Mahajan, and Patrick Veyssière, Elsevier Science Ltd, pp. 9712-9716.
Wielage, B.; Lampke, T.; Marx, G.; Nestler, K.; Starke, D. 1999. Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochimica Acta 337(1): 169-177.
Wu, Y.; Yao, C.; Hu, Y.; Yang, S.; Qing, Y.; Wu, Q. 2014. Flame retardancy and thermal degradation behavior of red gum wood treated with hydrate magnesium chloride. Journal of Industrial and Engineering Chemistry 20(5): 3536-3542.
Yorulmaz, S.Y.; Atimtay, A.T. 2009. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology 90(7): 939-946.
Yunchu, H.; Peijang, Z.; Songsheng, Q. 2000. TG-DTA studies on wood treated with flameretardants. Holz als Roh-und Werkstoff 58(1-2): 35-38.