Physical, mechanical and thermal properties of wood/zeolite/plastic hybrid composites


  • Alperen Kaymakci
  • Turker Gulec
  • Seyyed Khalil Hosseinihashemi
  • Nadir Ayrilmis


Pinus sylvestris, swelling, thermoplastic composites, technological properties, thermal stability.


Effect of zeolite content on the physical, mechanical and thermal properties of wood plastic composites was investigated in this study. To meet this objective, pine wood flour (0, 10, 20, 30, 40, 50 wt%) with compatibilizing agent, zeolite (0, 10, 20, 30, 40, 50 wt%), and polypropylene were compounded in a twin screw co-rotating extruder. The mass ratio of the wood flour to polypropylene was 50/50 (w/w) in all compounds. Test specimens were produced using injection molding machine from the pellets. Physical and mechanical, and thermal (Thermogravimetry Analysis/Differential Scanning Calorimetry) properties of the wood plastic composites were determined. The water absorption and thickness swelling properties of wood plastic composites improved with increasing zeolite content. The flexural and tensile properties of the wood plastic composites decreased with increasing zeolite content. All the wood plastic composites provided the values of flexural strength (58,4-72,9 MPa) and flexural modulus (2718-5024 MPa) that were well over the requirement by the standard specified in ASTM D 6662. The mass loss rates values of wood plastic composites increased with increasing zeolite contents. The Differential Scanning Calorimetry analysis showed that the melt crystallization enthalpies and degree of crystallization of wood plastic composites decreased with increasing zeolite content. The decrease in the Tc and Xc indicated that zeolite was the poor nucleating agent for the wood plastic composites.


Download data is not yet available.


Anonymus, 2011. Wood-plastic composites: Technologies and global markets. [cited 22.09.2016]. ISBN: 1596237651.

Ashori, A.; Nourbakhsh, A. 2009. Mechanical behaviour of agro-residue reinforced polyethylene Composites. Journal of Applied Polymer Science 111: 2616-2620.

ASTM International. 2001. Standard Specification for Polyolefin-Based Plastic Lumber Decking Boards. ASTM D 6662-13. West Conshohocken, PA, Pennsylvania.

ASTM International. 2008. Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM D3418-08b. West Conshohocken, PA, Pennsylvania.

Aydemir, D.; Civi, B.; Alsan, M.; Wang, X.A. 2016. Mechanical, morphological and thermal properties of nano-boron nitride treated wood materials. Maderas.Cienc Tecnol 18(1): 19-32.

Ayrilmis, N.; Kaymakci, A. 2013. Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongata wood, Industrial Crops and Products 43: 457-464.

Ayrilmis, N.; Kaymakci, A.; Akbulut, T.; Elmas, G.M. 2013. Mechanical performance of composites based on wastes of polyethylene aluminum and lignocellulosics wastes. Composites Part B: Engineering 47: 150-154.

Bledzki, A.K.; Gassan, J. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24: 221-274.

Bledzki, A.K.; Reihmane, S.; Gassan, J. 1998. Thermoplastics reinforced with wood fillers: a literature review. Polymer-Plastics Technology and Engineering 37: 451-468.

Carus, M.; Gahle, C. 2008. Market & Future trends for Wood Polymer Composites in Europe: The example of Germany, Woodhead Publishing Ltd, Cambridge, England.

Chang, B.P; Akil, H.M; Nasir, R.M. 2013. Mechanical and Tribological Properties of Zeolitereinforced UHMWPE Composite for Implant Application, Procedia Engineering 68: 88 - 94.

Cheng, J.Q. 1985. Wood Science, Beijing, Chinese Forestry Publishers.

Demir, H.; Arkıs, E.; Balkose, D.; Ulku, S. 2005. Synergistic effect of natural zeolites on flame reterdant additives. Polymer Degradation and Stability 89: 478-483.

Demir, H.; Atikler, U.; Balköse, D.; Tihminlıoglu, F. 2006. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Composites Part A: Applied Science and Manufacturing 37: 447-456.

Doan, T.T.L. Brodowsky, H.; Mäder, E. 2007. Jute fibre/polypropylene composites. II. Thermal, hydrothermal and dynamic mechanical behavior. Composites Science and Technology 67: 2707–2714.

International Organization for Standardization. ISO. 2010. Determination of Flexural Properties, ISO 178:2010. Geneva.

International Organization for Standardization. ISO. 2012. Determination of Tensile Properties - Part 1: General Principles, ISO 527:2012. Geneva.

International Organization for Standardization. ISO. 2008. Determination of Water Absoption, ISO 62:2008. Geneva.

Khonsari, A.; Taghiyari, H.R.; Karimi, A.; Tajvidi, M. 2015. Study on the effects of wood flour geometry on physical and mechanical properties of wood-plastic composites. Maderas- Cienc Tecnol 17(3): 545-558.

Kidalova, L.; Stevulova, N.; Terpakova, E.; Sicakova, A. 2012. Effective Utilization of Alternative Materials in Lightweight Composites. Journal of Cleaner Production 34: 116-119.

Kim, H.S.; Kim, H.J. 2008. Influence of the zeolite type on the mechanical-thermal properties and volatile organic compound emissions of natural-flour-filled polypropylene hybrid composites. Journal of Applied Polymer Science 110: 3247-3255.

Kordkheili, H.Y.; Farsi, M.; Rezazadeh, Z. 2013. Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Composites Part B: Engineering 44: 750-755.

Mengeloglu, F.; Karakus, K. 2008. Thermal degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites. Sensors 8: 500-519.

Mohanty, S.; Verma, S.K.; Nayak, S.K. 2006. Dyamic mechanical and thermal properties of MAPE treated jute/HDPE Composites. Composites Science and Technology 66: 538-547.

Naik, S.N.; Vaibhav, V.G.; Prasant, K.R.; Ajay, K.D. 2007. Production of first and second generation biofuels: A comprehensive review. Renewable & Sustainable Energy Reviews 14: 578-597.

Najafi, S.K.; Hamidina, E.; Tajvidi, M. 2005. Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science 100: 3641-3645.

Nafchi, H.R.; Abdouss, M.; Najafi, S.K.; Gargari, R.M.; Mazhar, M. 2015. Effects of nanoclay particles and oxidized polypropylene polymers on improvement of the thermal properties of wood plastic composite. Maderas. Cienc Tecnol 17(1): 45-54.

Safdari, V.; Khodadadi, H.; Hosseinihashemi, S.K.; Ganjian, E. 2011. The effects of poplar bark and wood content on the mechanical properties of wood-polypropylene composites. Bioresources 6: 5180-5192.

Samariha, A.; Hemmasi, A.H.; Ghasemi, I.; Bayzar, B.; Nemati, M. 2015. Effect of nanoclays contents on properties, of bagasse flour/reprocessed high density polyethylene/nanoclays composites. Maderas. Cienc Tecnol 17(3): 637-646.

Uysal, B.; Yorur, H. 2013. The effect of steam treatment on bonding strength of impregnated wood materials. Journal of Adhesion Science and Technology 27: 896-904.

Valles-Rosales, D.J.; Méndez-González, L.C.; Rodríguez-Picon, L.A.; Valle-Carrasco, A.D.; Alodan, H. 2016a. Wood chile peppers stalks-plastic composite production. Maderas. Cienc Tecnol 18(1): 179-190.

Valles-Rosales, D.J.; Rodríguez-Picon, L.A.; Méndez-González, L.C.; Valle-Carrasco, A.D.; Alodan, H. 2016b. Analysis of the mechanical properties of wood-plastic composites based on agriculture chili pepper waste. Maderas. Cienc Tecnol 18(1): 43-54.

Väisänen, T. 2016. Effects of Thermally Extracted Wood Distillates on the Characteristics of Wood-Plastic Composites. Department of Applied Physics, University of Eastern Finland, Dissertations in Forestry and Natural Sciences, number 222, ISSN: 1798-5668, Finland.

Walker, J.C.F. 2006. Primary Wood Processing: Principles and Practise, Springer, Dordrecht, The Netherlands.

Wang, W.; Zhang, W.; Chen, H.; Zhang, S.; Li, J. 2015. Synergistic effect of synthetic zeolites on flame-retardant wood-flour/polypropylene Composites. Construction and Building Materials 79: 337-344.

Yemele, M.C.N.; Koubaa, A.; Cloutier. A.; Soulounganga, P.; Walcott, M. 2010. Effect of bark fibre content and size on mechanical properties of bark/HDPE composites. Composites Part B: Engineering 41: 131-137.

Yorur, H. 2016. Utilization of waste polyethylene and its effects on physical and mechanical properties of oriented strand boards. Bioresources 11: 2483-2491.


How to Cite

Kaymakci, A., Gulec, T., Hosseinihashemi, S. K., & Ayrilmis, N. (2017). Physical, mechanical and thermal properties of wood/zeolite/plastic hybrid composites. Maderas-Cienc Tecnol, 19(3), 339–348. Retrieved from