The effect of titanium dioxide nanoparticles obtained by microwave-assisted hydrothermal method on the color and decay resistance of pinewood

Authors

  • Paula Zanatta
  • Marília Lazarotto
  • Pedro Henrique Gonzalez de Cademartori
  • Sérgio da Silva Cava
  • Mário Lúcio Moreira
  • Darci Alberto Gatto

Keywords:

Ganoderma applanatum, hydrothermal microwave, Pinus elliottii, vacuum-pressure method, wood preservation

Abstract

This study aimed to synthesize titanium dioxide nanoparticles by microwave-assisted hydrothermal method to incorporate them to the structure of Pinus elliottii wood. The color changes and the decay resistance of impregnated wood was investigated. The titanium dioxide nanoparticles were impregnated into Pinus elliottii wood by vacuum-pressure and simple immersion methods. Furthermore, Pinus elliottii wood was treated with chromated copper borate solution tocompare their effectiveness to the titanium dioxide treated wood. The titanium dioxide nanoparticles impregnated by vacuum-pressure were presented especially on the wood surface, forming a homogeneous coating. The titanium dioxide nanoparticles did not change the natural color of wood and, at the same time, decreased the degree of the white rot fungus (Ganoderma applanatum) colonization in the wood structure and the wood decay, compared to the untreated one. The titanium dioxide treated wood samples provided similar protection against decay in comparison to wood treated with chromated copper borate. The impegnation with titanium dioxide nanoparticles can be a good alternative to decrease/avoid the fungi proliferation, providing to Pinus elliottii wood a self-cleaning mechanism.

  PDF XML

Downloads

Download data is not yet available.

References

American Society For Testing And Materials. ASTM. 2005. Standard method for accelerated laboratory test of natural decay resistance of woods. ASTM D 2017. Philadelphia.

Bilecka, I.; Niederberger, M. 2010. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2: 1358-1374.

Cappelletto, E.; Maggini, S.; Girardi, F.; Bochicchio, G.; Tessadri, B.; DI Maggio, R. 2013. Wood surface protection with different alkoxysilanes: a hydrophobic barrier. Cellulose 20: 3131-3141.

De Filpo, G.; Palermo, A.M.; Rachiele, F.; Nicoletta, F.P. 2013. Preventing fungal growth in wood by titanium dioxide nanoparticles. International Biodeterioration & Biodegradation 85: 217-222.

Devi, R.R.; Maji, T.K. 2013. Effect of nanofillers on flame retardancy, chemical resistance, antibacterial properties and biodegradation of wood/styrene acrylonitrile co-polymer composites. Wood Science and Technology 47: 1135-1152.

Donath, S.; Militz, H.; Mai, C. 2006. Creating water-repellent effects on wood by treatment with silanes. Holzforschung 60: 40-46.

Esteves, B.; Pereira, H. 2008. Wood modification by heat treatment: A review. BioResources 4: 370-404.

Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. 2011. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology 90: 1847-1868.

Galvão, A.P.M.; Magalhães, W.L.E.; Mattos, P. P. De. 2004. Processos práticos para preservar a madeira. Embrapa, Documentos 96. Colombo, PR.

Gao, L.; Zhan, X.; Lu, Y.; Li, J.; Sun, Q. 2015. pH-dependent structure and wettability of TiO2- based wood surface. Materials Letters 142: 217-220.

Gharagozlou, M.; Bayati, R. 2015. Photocatalytic characteristics of single phase Fe-doped anatase TiO2 nanoparticles sensitized with vitamin B12. Materials Research Bulletin 61: 340-347.

Ghosh, S.C.; Militz, H.; Mai, C. 2013. Modification of Pinus sylvestris L. wood with quat-and amino-silicones of different chain lengths. Holzforschung 67: 421-427.

Gupta, S.M.; Tripathi, M. 2011. A review of TiO2 nanoparticles. Chinese Science Bulletin 56: 1639-1657.

Harandi, D.; Ahmadi, H. ; Achachluei, M.M. 2016. Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. International Biodeterioration & Biodegradation 108: 142-148.

Huang, Z.; Maness, P.C.; Blake, D.M.; Wolfrum, E.J.; Smolinski, S.L.; Jacoby, W.A. 2000. Bactericidal mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 130: 163-170.

Humar, M.; Bokan, M.; Amartey, S.A.; Šentjurc, M.; Kalan, P.; Pohleven, F. 2004. Fungal bioremediation of copper, chromium and boron treated wood as studied by electron paramagnetic resonance. International Biodeterioration & Biodegradation 53: 25-32.

Kazuhito, H.; Hiroshi, I.; Akira, F. 2005. TiO2 Photocatalysis: A Historical Overview and Prospects. Japanese Journal of Applied Physics 44: 8269.

Kelley, S.S.; Jellison, J.; Goodell, B. 2002. Use of NIR and pyrolysis-MBMS coupled with analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. FEMS Microbiology Letters 209: 107-111.

Lande, S.; Westin, M.; Schneider, M. 2004. Properties of furfurylated wood. Scandinavian Journal of Forest Research 19: 22-30.

Lu, Y.; Feng, M.; Zhan, H. 2014. Preparation of SiO2–wood composites by an ultrasonic- sol–gel technique. Cellulose 21: 4393-4403.

Markowska-Szczupak, A.; Ulfig, K.; Morawski, A. 2011. The application of titanium dioxide for deactivation of bioparticulates: an overview. Catalysis Today 169: 249-257.

Mendes, P.G.; Moreira, M.L.; Tebcherani, S.M.; Orlandi, M.O.; Andrés, J.; Li, M.S.; Diaz Mora, N.; Varela, J.A.; Longo, E. 2012. SnO2nanocrystals synthesized by -assisted hydrothermal method: towards a relationship between structural optical properties. Journal of Nanoparticle Research 14: 1-13.

Moreira, M. 2010. Titanatos de alcalinos terrosos: a ordem associada à desordem. 2010. 113 f, Tese (Doutorado em Química)–Departamento de Química, Universidade Federal de São Carlos, São Carlos.

Murugan, A.V.; Samuel, V.; Ravi, V. 2006. Synthesis of nanocrystallineanatase TiO2 bymicrowave hydrothermal method. Materials Letters 60: 479-480.

Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’shea, K.; Entezari, M.H.; Dionysiou, D.D. 2012. Areview on the visible light active titanium dioxide photocatalysts for environmentalapplications. Applied Catalysis B: Environmental 125: 331-349.

Pori, P.; Vilčnik, A.; Petrič, M.; Sever Škapin, A.; Mihelčič, M.; Šurca-Vuk, A.; Novak, U.; Orel, B. 2016. Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions on spruce (Picea abies) wood. Applied Surface Science 372: 125-138.

Rassam, G.; Abdi, Y.; Abdi, A. 2012. Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. Journal of Experimental Nanoscience 7: 468-476.

Rowell, R.M. 2012. Handbook of wood chemistry and wood composites. CRC press. Salla, J.; Pandey, K.K.; Srinivas, K. 2012. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polymer Degradation and Stability 97: 592-596.

Siegloch, A. M.; Marchiori, J. M. C. 2015. Anatomia da madeira de treze espécies de coníferas. Revista da Ciência da Madeira 6: 149-165.

Silva, L. 2013. Síntese e caracterização do composto SrTiO3 e SrTi1-xFexO3 através do método hidrotermal assistido por microondas, 2013. Universidade de São Paulo.

Sun, B.; Zhou, G.; Shao, C.; Jiang, B.; Pang, J.; Zhang, Y. 2014. Spherical mesoporous TiO2 fabricated by sodium dodecyl sulfate-assisted hydrothermal treatment and its photocatalytic decomposition of papermaking wastewater. Powder Technology 256: 118-125.

Sun, Q.; Yu, H.; Liu, Y.; Li, J.; Lu, Y.; Hunt, J.F. 2010. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung 64: 757-761.

Taghiyari, H.R.; Schmidt, O. 2014. Nanotechnology in wood-based composites panels. International Journal of Bio-Inorganic Hybrid Nanomaterials 3: 65-73.

Tripathi, S.; Pant, H.; Kashyap, A.K. 2014. Decay resistance against basidiomycetes fungi of heat-treated pinus roxburghii and mangifera indica wood. Journal of Tropical Forest 26: 203-207.

Tuong, V.M.; Chu, T.V. 2015. Improvement of Color Stability of Acacia Hybrid Wood by TiO2 Nano Sol Impregnation. Bioresources 10(3): 5417-5425.

Wang, B.; Feng, M.; Zhan, H. 2014. Improvement of wood properties by impregnation with TiO2 via ultrasonic-assisted sol–gel process. RSC Advances 4: 56355-56360.

Wang, X.; Liu, J.; Chai, Y. 2012. Thermal, mechanical, and moisture absorption properties of TiO2 composites prepared by a sol-gel process. BioResources 7: 893-901.

Wimmer, R. 2002. Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia 20: 21-36.

Downloads

Published

2017-10-01

How to Cite

Zanatta, P., Lazarotto, M., Gonzalez de Cademartori, P. H., da Silva Cava, S., Lúcio Moreira, M., & Alberto Gatto, D. (2017). The effect of titanium dioxide nanoparticles obtained by microwave-assisted hydrothermal method on the color and decay resistance of pinewood. Maderas. Ciencia Y Tecnología, 19(4), 495–506. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/2988

Issue

Section

Article

Most read articles by the same author(s)

<< < 1 2