Efecto de la presión de prensado y la adición de lignina kraft en la producción de tableros aglomerados autoenlazados a partir de Gynerium sagittatum pretratada con vapor
Keywords:
Adhesivos naturales, fibras naturales, productos forestales, propiedades físicomecánicas, tableros de alta densidad, Forest products, high density fiberboard, natural adhesives, natural fibers, physicomechanical propertiesAbstract
El Gynerium sagittatum es una gramínea que presenta gran adaptabilidad ecológica lo cual la hace una fuente lignocelulósica ideal para la fabricación de tableros aglomerados sin aditivos sintéticos. Se evalúa el efecto de la presión de prensado y de la adición de lignina kraft purificada sobre las propiedades fisicomecánicas de tableros de fibras de Gynerium sagittatum de alta densidad. La materia prima es pretratada en un reactor de steam explosion a severidad 4,1 y la temperatura de prensado se fija en 217°C. Se varia la presión de prensado entre 2 y 15 MPa. Se determina que la presión de prensado más apropiada para obtener tableros de buena calidad es 2 MPa obteniendo valores para el módulo de elasticidad de 6000 MPa, módulo de ruptura de 47 MPa, enlace interno de 1,50 MPa, absorción de agua durante 24 horas de 25% e hinchamiento en espesor durante 24 horas del 15%. Partiendo de estas condiciones de operación, se evalúa la inclusión de lignina entre 0 y 30%. Se determina que el aumento de lignina no afecta significativamente el desempeño mecánico de los tableros, pero sí su estabilidad dimensional, dando como resultado una absorción de agua durante 24 horas de 19% e hinchamiento en espesor durante 24 horas del 8,5%, a un valor óptimo de 20% de inclusión de lignina.
Gynerium sagittatum is a grass that has great ecological adaptability, which makes it an ideal lignocellulosic source for the manufacture of fiberboards. The effects of pressing pressure and the addition of kraft lignin on the physicomechanical properties of high density fiberboards of Gynerium sagittatum are evaluated. The raw material is pretreated in a steam explosion reactor at severity 4,1. The pressing temperature is set at 217°C. The pressing pressure is varied between 2 and 15 MPa. The most appropriate pressing pressure to obtain a good quality boards is 2 MPa. The values of properties at optimal conditions are: modulus of elasticity 6000 MPa, modulus of rupture 47 MPa, internal bond 1,50 MPa 24 h water absorption 25% and 24 h thickness swelling 15%. Based on these operating conditions, the inclusion of lignin between 0 and 30% is evaluated. The addition of lignin does not significantly affect the mechanical performance of the fiberboards but improve its dimensional stability. The obtained values for 24 h water absorption and 24 h thickness swelling are 19% and 8,5% respectively, at a 20% of lignin addition.
Downloads
References
Anglès, M.N.; Reguant, J.; Montane, D.; Ferrando, F.; Farriol, X.; Salvado, J. 1999. Binderless composites from pretreated residual softwood. Journal of Applied Polymer Science 73(12):2485-2491.
Betancur, M.; Bonelli, P. R.; Velásquez, J.A.; Cukierman, A. L. 2009. Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater: effect of demineralisation. Bioresource Technology 100(3):1130-1137.
British Standards Institution. BSI. 1993. Particleboards and fibreboards- Determination of swelling in thickness after immersion in water. BS EN 317:1993.
British Standards Institution. BSI. 1993. Particleboards and fibreboards - Determination of tensile strength perpendicular to the plane of the board. BS EN 319: 1993.
British Standards Institution. BSI. 1993. Wood-based panels - Determination of density. BS EN 323:1993.
British Standards Institution. BSI. 1993. Wood-based panels - Determination of modulus of elasticity in bending and of bending strength. BS EN 310:1993.
De Campos, C.I.; Rocco-Lahr, F.A. 2004. Caracterizaccion del MDF producido a partir de Eucalipto y adhesivo Poliuretano natural. Maderas- Cienc Tecnol 6(1): 73-84.
Diossa, G.; Velásquez, J.; Quintana, G. 2014. Binderless fiberboards from Gynerium Sagittatum. Revista Investigaciones Aplicadas 8(2): 101-112.
Hashim, R.; Said, N.; Lamaming, J.; Baskaran, M.; Sulaiman, O.; Sato, M.; Sugimoto, T. 2011. Influence of press temperature on the properties of binderless particleboard made from oil palm trunk. Materials and Design 32(5): 2520-2525.
Lin, S.Y. 1992. Commercial spent pulping liquors. In Methods in lignin chemistry. pp. 75-80. Springer. Mancera, C.; El Mansouri, N.E.; Pelach, M.A.; Francesc, F.; Salvado, J. 2012. Feasibility of incorporating treated lignins in fiberboards made from agricultural waste. Waste Management 32(10): 1962-1967.
Mancera, C.; El Mansouri, N.E.; Vilaseca, F.; Ferrando, F.; Salvado, J. 2011. The effect of lignin as a natural adhesive on the physico-mechanical properties of vitis vinifera fiberboards. BioResources 6: 2851-2860.
Nasir, M.; Gupta, A.; Beg, M. D. H.; Chua, G. K.; Kumar, A. 2013. Fabrication of medium density fibreboard from enzyme treated rubber wood (Hevea brasiliensis) fibre and modified organosolv lignin. International Journal of Adhesion and Adhesives 44: 99-104.
Overend, R. P.; Chornet, E.; Gascoigne, J.A. 1987. Fractionation of Lignocellulosics by Steam-Aqueous Pretreatments [and Discussion]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 321: 523-536.
Poblete, H.; Burgos O, R. 2010. Eucalyptus nitens como materia prima para tableros de partículas. Maderas-Cienc Tecnol 12(1): 25-35.
Poblete, H.; Vargas, R. 2006. Relacion entre densidad y propiedades de tableros HDF producidos por un proceso seco. Maderas-Cienc Tecnol 8(3): 169-182.
Quintana, G.; Velásquez, J.; Betancourt, S.; Gañán, P. 2009. Binderless fiberboard from steam exploded banana bunch. Industrial Crops and Products 29: 60-66.
Rangel, L.; Moreno, P.; Trejo, S.; Valero, S. 2017. Propiedades de tableros aglomerados de partículas fabricados con madera de Eucalyptus urophylla. Maderas-Cienc Tecnol 19(3):373 - 386.
Rowell, R. M.; Gutzmer, D. I.; Sachs, I. B.; Kinney, R. E. 1976. Effects of alkylene oxide treatments on dimensional stability of wood. Wood Science 9(1): 51-54.
Salvadó, J.; Velásquez, J.; Ferrando, F. 2003. Binderless fiberboard from steam exploded Miscanthus Sinensis: Optimization of pressing and pretreatment conditions. Wood Science and Technology 37: 279-286.
Standard Specific Interest Group for this Test Method. 2001. Pentosans in wood and pulp. Connect, 1-5.
Stelte, W. 2013. Steam explosion for biomass pre-treatment. Resultat Kontrakt (RK) Report. Danish Technological Institute. p. 15. Denmark.
Suchsland, O.; Woodson, G. E. 1990. Fiberboard Manufacturing Practices in the United States. Forest Products Research Society. pp. 263. United States of America. ISBN 0-935018-50-6.
Velásquez, J.; Ferrando, F.; Salvadó, J. 2003. Effects of kraft lignin addition in the production of binderless fiberboard from steam exploded Miscanthus sinensis. Industrial Crops and Products 18(1): 17-23.
Velásquez, J. A.; Ferrando, F.; Salvadó, J. 2002. Binderless fiberboard from steam exploded Miscanthus sinensis : The effect of a grinding process. Holz Als Roh- Und Werkstoff 60: 297-302.
Westin, M.; Simonson, R.; Östman, B. 2001. Kraft lignin wood fiberboards - The effect of kraft lignin addition to wood chips or board pulp prior to fiberboard production. Holz Als Roh- Und Werkstoff 58(6): 393-400.
Zhang, D.; Zhang, A.; Xue, L. 2015. A review of preparation of binderless fiberboards and its self-bonding mechanism. Wood Science and Technology 49(4): 661-679.