Particularities of hollow-core briquettes obtained out of spruce and oak wooden waste


  • Cosmin Spirchez
  • Aurel Lunguleasa
  • Madalina Matei


Biomass, calorific value, Picea abies, Quercus ruber, renewable combustible, wooden waste


Wooden hollow-core briquettes made of wooden waste represent an important category of wood-based combustible materials used in heating chambers. This paper aims to determine some of the characteristics of these briquettes made of spruce and oak waste. The comparison to the classic types of briquettes is made in order to identify the advantages and disadvantages of such briquettes. The main characteristics of these briquettes are presented, starting from size, density, abrasion, compression and ending with the inferior and superior calorific values, calorific density and ash content. The obtained results show that there are few differences between their characteristics and those of the classic ones. These differences depend on the pressing method and equipment, in comparison to other briquettes without a hollow core. Apart from the characteristics and the nature of the material being used, the hollow-core briquettes remain renewable combustible materials increasingly used in combustion (for heating purposes or in order to cook food or for heating in rural households or as substitutes for charcoal or cogenerate in various industrial fields). Given their economical character, there is complete suitability of these briquettes for cooking and heating.


Download data is not yet available.


Batista, D.C.; Paez, J.B.; Muñiz G.S.N.; Nisgoski S.; da Silva Oliveira J. T. 2015. Microstructural Aspects of Thermally Modified Eucalyptus Grandis Wood. Maderas- Cienc Tecnol 17(3): 525 – 532.

Boutin, J.P.; Gervasoni, G.; Help, R.; Seyboth, K.; Lamers, P.; Ratton, M. et al. 2007. Alternative Energy Sources in Transition Countries. The Case of Bio-energy in Ukraine. Environ Eng Manag J 6: 3-11.

Ciubotă-Roşie, C.; Gavrilescu, M.; Macoveanu, M. 2008. Biomass– an Important Renewable Source of Energy in Romania. Environ Eng Manag J 7: 559-568.

Dhillon, R.S.; von Wuelhlisch, G. 2013. Mitigation of Global Warming through Renewable Biomass. Biomass Bioenerg 48: 75-87.

Demirbas, A.; Demirbas, A.S. 2004. Briquetting Properties of Biomass Waste Materials. Energ Source Part A 26: 83-91.

Demirbas, A. 2001. Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals. Energ Convers Manag 42: 1357-1378.

EREC (European Renewable Energy Council). 2015. Renewable energy Technology Roadmap,20%by2020. Online at: /Documents/Publications/Renewable_Energy_Technology_Roadmap.pdf.

Eurostat 2011. Forestry in the EU and the World. A Statistical Portrait, 2011 edition, Available from:

Eurostat 2012. Statistics in focus 44/2012. Environment and Energy. Author: Marek ŠTURC, Available from:

Krajnc, N. 2015. Wood Fuels Handbook. Food and agriculture organization of the united nations (FAO) Pristina, Croatia, On line at:

Garcia, A.M.; Barcia, B.M.J.; Diaz, D.M.A.; Hernandez, J.A. 2004. Preparation of Active Carbon from a Comercial Holm-oak Charcoal: Study of Micro-and Meso-porosity. Wood Sci Technol 37: 385-394.

Gavrilescu, D. 2008. Energy from Biomass in Pulp and Paper Mills. Environ Eng Manag J 7: 537-546.

Jehlickova, B.; Morris, R. 2007. Effectiveness of Policy Instruments for Supporting the Use of Waste Wood as a Renewable Energy Resource in the Czech Republic. Energ Policy 35: 577-585.

Junginger, M.; Bolkesjo, T.; Bradley, D.; Dolzan, P.; Faaij, A.; Heinimö, J. et al. 2008 Developments in International Bioenergy Trade. Biomass Bioenerg 32: 717-729.

Kaliyan, N.; Morey, R.V. 2009. Factors Affecting Strength and Durability of Densified Biomass Products. Biomass Bioenerg 33: 337-359.

Kers, J.; Kulu P.; Aruniit, A.; Laurmaa, V.; Križan P.; Šooš L. et al. 2013. Determination of physical, mechanical and burning characteristics of polymeric waste material briquettes. Estonian Journal of Engineering 19: 307–316.

Kim, S.; Dale, B.E. 2003. Cumulative Energy and Global Warming Impact from the Production of Biomass for Biobased Products. Journal of Industrial Ecology 147-162.

Lăzăroiu, G.; Mihăescu, L.; Prisecaru, T.; Oprea, I.; Pîşă, I.; Negreanu, G. et al. 2008. Combustion of Pitcoal-wood Biomass Briquettes in a Boiler Test Facility. Environ Eng Manag J 7: 595-601.

Lundborg, A. 1998. A Sustainable Forest Fuel System in Sweden. Biomass Bioenerg 15: 399-406.

Lakó, J.; Hancsók, J.; Yuzhakova, T.; Marton, G.; Utasi, A.; Rédey, A. 2008. Biomass– a Source of Chemicals and Energy for Sustainable Development. Environ Eng Manag J 7: 499-509.

Mitchual, S.J.; Frimpong-Mensah, K.; Darkwa, N.A. 2013. Effect of Species, Particle Size and Compacting Pressure on Relaxed Density and Compressive Strength of Fuel Briquettes. International Journal of Energy and Environmental Engineering. 4: 30-36.

Mc Dougal, O.; Eidemiller, S.; Weires, N. 2010. Biomass Briquettes: turning Waste into Energy. Biomass Magazine, On line: http: /5148/biomass-briquettes-turning-waste-into-energy.

Nielsen, N.P.K.; Gardner, D.J.; Poulsen, T.; Felby, C. 2009. Importance of Temperature, Moisture Content and Species for the Conversion Process of Wood Residues into Fuel Pellets. Wood Fiber Sci 41: 414–425.

Plištil, D.; Brožek, M.; Malaták, J.;Roy, A.; Hutla, P. 2005. Mechanical Characteristics of Standard Fuel Briquettes on Biomass Basis. Res Agr Eng 51: 66-72. On line:

Prasertsan, S.; Sajakulnukit, B. 2006. Biomass and Bioenergy in Thailand: Potential, Opportunity and Barriers. Renew Energ 31: 599-610.

Tabarés, J.L.M.; Ortiz, L.; Granada, E.; Viar, F.P. 2000. Feasibility Study of Energy Use for Densificated Lignocellulosic Material (briquettes). Fuel 79: 1229-1237.

Pallavi, H.V.; Srikantaswamy, S.; Kiran, B.M.; Vyshnavi, D.R.; Ashwin, C.A. 2013. Briquetting Agricultural Waste as an Energy Source. Journal of Environmental Science, Computer Science and Engineering and Technology 2: 160-172.

Rahman, A.N.E.; Masood, M.A.; Prasad, C.S.N.; Venkatesham, M. 1989. Influence of Size and Shape on the Strength of Briquettes. Fuel Process Technol 23: 185-195.

Thomas, S.C.; Malczewski, G. 2007. Wood Carbon Content of Tree Species in Eastern China: Interspecific Variability and the Importance of the Volatile Fraction. J Environ Manag 85: 659–662.

Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. 2011. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenerg 35: 910-918.

Shulga, G.; Betkers, T.; Brovkina, J.; Aniskevicha, O.; Ozolinš, J. 2008. Relationship between Composition of the Lignin-based Interpolymer Complex and its Structuring Ability. Environ Eng Manag J 7: 397-400.

Sola, O.C.; Atis, C.D. 2012. The Effects of Pyrite Ash on the Compressive Strength Properties of Briquettes. KSCE Journal of Civil Engineering; 16: 1225-1229.

Verma, V.K.; Bram, S.; de Ruyck, J. 2009. Small Scale Biomass Systems: Standards, Quality Labeling and Market Driving Factors - An EU Outlook. Biomass Bioenerg 33: 1393-1402.

Wechsler, M.; Shulenberger, A.; Wall, C.; Braig, J . 2010. Torrefaction Method and Apparatus. Renewable Fuel Technologies. San Jose, CA, USA.

Wood Handbook. 2010. Wood as an engineering material. Centennial Edition. Forest Products Laboratory, USA, On line at: wood_eng_handbook/wood_handbook_fpl_2010.pdf

Zarringhalam, M.A.; Gholipour, Z.N.; Dorosti, S.; Vaez, M. 2011. Physical properties of solid fuel briquettes from bituminous coal waste and biomass. Journal of Coal Science and Engineering (China) 17: 434-438.




How to Cite

Spirchez, C., Lunguleasa, A., & Matei, M. (2018). Particularities of hollow-core briquettes obtained out of spruce and oak wooden waste. Maderas-Cienc Tecnol, 20(1), 139–152. Retrieved from




Most read articles by the same author(s)