Estudio de cinética en procesos termogravimétricos de materiales lignocelulósicos


  • José Juan Alvarado Flores
  • José Guadalupe Rutiaga Quiñones


Conversión térmica, Cupressus sempervirens, energía renovable, parámetros cinéticos, kinetic parameters, renewable energy, thermal conversion


La madera de pino representa el 20% de las especies forestales plantadas en todo el mundo, y actualmente es de vital importancia en aplicaciones industriales como en aserrío, fabricación de papel y medicina. Actualmente, se ha destacado su uso en aplicaciones energéticas. En este estudio se presenta una breve revisión sobre el análisis térmico realizado a diversas especies de madera de pino. Nos enfocamos principalmente al análisis de los resultados respecto a cómo varía el contenido de masa o pérdida de peso con el cambio de temperatura a partir del análisis de las curvas de termogravimetría y su derivada. Se han considerado diversas especies de madera de pino: Pinus caribaea, Pinus patula, Cupressus sempervirens, Pinus pinaster, Pinus radiata, Pinus sylvestris, Pinus pinea y Pinus taeda. Con el objetivo de mostrar las diferencias y similitudes respecto a la estabilidad térmica de las especies mencionadas, se han discutido los principales parámetros a partir de las curvas de termogravimetría como energía de activación, factor pre-exponencial y orden de reacción. Además, se examinan las etapas de descomposición de acuerdo a los principales componentes de la madera tales como agua, celulosa, hemicelulosa, lignina y extractivos.

Pine wood accounts for 20% of the world's planted forest species, and is currently of vital importance in industrial applications such as sawmills, papermaking and medicine. Actually, its use in energy applications has been emphasized. This study presents a brief review on the thermal analysis of various species of pine wood. We focus mainly on the analysis of the results regarding how the mass content or weight loss varies with the temperature change from the analysis of the thermogravimetric curves and its derivative. Several species of pine wood have been considered: Pinus caribaea, Pinus patula, Cupressus sempervirens, Pinus pinaster, Pinus radiata, Pinus sylvestris, Pinus pinea and Pinus taeda. In order to show the differences and similarities with respect to the thermal stability of the mentioned species, we have discussed the main parameters from the thermogravimetry curves such as activation energy, pre-exponential factor and reaction order. In addition, the decomposition stages are examined according to the main components of the wood such as water, cellulose, hemicellulose, lignin and extractives.


Download data is not yet available.


Almeida, G.; Brito, J. O.; Perré, P. 2010. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresource Technology 101(24): 9778-9784.

Almeida, G.; Santos, D. V.; Perré, P. 2014. Mild pyrolysis of fast-growing wood species (Caribbean pine and Rose gum): Dimensional changes predicted by the global mass loss. Biomass and Bioenergy 70: 407-415.

Álvarez Godoy, E.; de Carvalho Rodrigues, J. C.; Martins Alves, A. M.; Álvarez Lazo, D. 2007. Estudio del contenido y la calidad de la lignina mediante Pirólisis analítica en madera de Pinus caribaea. Maderas. Ciencia y Tecnología 9(2): 179-188.

Álvarez, M. 2007. The State of America’s Forests. Bethesda, MD: Society of American Foresters.

Álvarez, V. A.; Vázquez, A. 2004. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation and Stability 84(1): 13-21.

Barroso Lopes, D.; Mai, C.; Militz, H. 2014. Marine borers resistance of chemically modified Portuguese wood. Maderas. Ciencia y Tecnología 16(1): 109-124.

Baysal, E.; Deveci, I.; Turkoglu, T.; Toker, H. 2017. Thermal analysis of oriental beech sawdust treated with some commercial wood preservatives. Maderas. Ciencia y Tecnología 19(3): 329-338.

Boumediene, M.; Benaïssa, H.; George, B.; Molina, S.; Merlin, A. 2015. Characterization of two cellulosic waste materials (orange and almond peels) and their use for the removal of methylene blue from aqueous solutions. Maderas. Ciencia y Tecnología 17(1): 69-84.

Branca, C.; Iannace, A.; Di Blasi, C. 2007. Devolatilization and Combustion Kinetics of Quercus cerris Bark. Energy & Fuels 21(2): 1078-1084.

Bridgwater, A. V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38: 68-94.

Bridgwater, A. V.; Peacocke, G. V. C. 2000. Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews 4(1): 1-73.

Caballero, J. A.; Conesa, J. A.; Font, R.; Marcilla, A. 1997. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis 42(2): 159-175.

Caballero, J. A.; Front, R.; Marcilla, A.; Conesa, J. A. 1997. Characterization of sewage sludges by primary and secondary pyrolysis. Journal of Analytical and Applied Pyrolysis 40: 433-450.

Chen, H.; Zhao, W.; Liu, N. 2011. Thermal analysis and decomposition kinetics of Chinese forest peat under nitrogen and air atmospheres. Energy & Fuels 25(2): 797-803.

Conesa, J. A.; Domene, A. 2011. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Thermochimica Acta 523(1): 176-181.

Cordero, T.; Garcia Herruzo, F.; Gomez Lahoz, C.; Rodríguez, J. J. 1989. Conventional pyrolysis of holm oak (Quercus rotundifolia) and aleppo pine (Pinus halepensis). Anales de Química 85(3): 445-447.

Couhert, C.; Commandre, J. M.; Salvador, S. 2009. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel 88(3): 408-417.

Courty, L.; Chetehouna, K.; Lemée, L.; Mounaïm-Rousselle, C.; Halter, F.; Garo, J. P. 2012. Pinus pinea emissions and combustion characteristics of limonene potentially involved in accelerating forest fires. International Journal of Thermal Sciences 57: 92-97.

D’Almeida, A.; Barreto, D.; Calado, V.; d’Almeida, J. 2007. Thermal analysis of less common lignocellulose fibers. Journal of Thermal Analysis and Calorimetry 91(2): 405-408.

Demirbas, A. 2007. Progress and recent trends in biofuels. Progress in energy and combustion science 33(1): 1-18.

Eckhoff, R. K. 2009. Understanding dust explosions. The role of powder science and technology. Journal of Loss Prevention in the Process Industries 22(1): 105-116.

Elaieb, M.; Candelier, K.; Pétrissans, A.; Dumarçay, S.; Gerardin, P.; Pétrissans, M. 2015. Heat treatment of Tunisian soft wood species: Effect on the durability, chemical modifications and mechanical properties. Maderas. Ciencia y Tecnología 17 (4): 699-710.

Fasina, O.; Littlefield, B. 2012. TG-FTIR analysis of pecan shells thermal decomposition. Fuel Processing Technology 102: 61-66.

Fateh, T.; Rogaume, T.; Luche, J.; Richard, F.; Jabouille, F. 2013. Kinetic and mechanism of the thermal degradation of a plywood by using thermogravimetry and Fourier-transformed infrared spectroscopy analysis in nitrogen and air atmosphere. Fire Safety Journal 58: 25-37.

Ferdous, D.; Dalai, A. K.; Bej, S. K.; Thring, R. W. 2002. Pyrolysis of lignins: experimental and kinetics studies. Energy & Fuels 16(6): 1405-1412.

Fisher, T.; Hajaligol, M.; Waymack, B.; Kellogg, D. 2002. Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis 62(2): 331-349.

Font, R.; Conesa, J. A.; Moltó, J.; Muñoz, M. 2009. Kinetics of pyrolysis and combustion of pine needles and cones. Journal of Analytical and Applied Pyrolysis 85(1): 276-286.

Garcia-Maraver, A.; Salvachúa, D.; Martínez, M. J.; Diaz, L. F.; Zamorano, M. 2013. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Management 33(11): 2245-2249.

Gaur, S.; Reed, T. B. 1995. An atlas of thermal data for biomass and other fuels. No. NREL/TP--433-7965. National Renewable Energy Lab., Golden, CO (United States).

Grabner, M.; Müller, U.; Gierlinger, N.; Wimmer, R. 2005. Effects of heartwood extractives on mechanical properties of larch. Iawa Journal 26(2): 211-220.

Gregor, A.; Riedmiller, A. 1993. Gran guía de la naturaleza. Arboles.

Gröndahl, M.; Teleman, A.; Gatenholm, P. 2003. Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydrate Polymers 52(4): 359-366.

Grønli, M. G.; Várhegyi, G.; Di Blasi, C. 2002. Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research 41(17): 4201-4208.

Hanson, C.; Yonavjak, L.; Clarke, C.; Minnemeyer, S.; Biosrobert, L.; Leach, A.; Schleeweis, K. 2010. Southern Forests for the Future, World Resources Institute, Washington, DC. (, 73).

Hehar, G.; Fasina, O.; Adhikari, S.; Fulton, J. 2014. Ignition and volatilization behavior of dust from loblolly pine wood. Fuel Processing Technology 127: 117-123.

Ibáñez, C.; Mantero, C.; Silva, L.; Rabinovich, M.; Escudero, R.; Franco, J. 2012. Preservación de madera tratada con Zn y Mn y efectividad de tratamiento antilixiviante con bórax. Maderas. Ciencia y Tecnología 14(2): 165-174.

Kastanaki, E.; Vamvuka, D.; Grammelis, P.; Kakaras, E. 2002. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Processing Technology 77: 159-166.

Kim, H. S.; Kim, S.; Kim, H. J.; Yang, H. S. 2006. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta 451(1): 181-188.

Kim, S. S.; Kim, J.; Park, Y. H.; Park, Y. K. 2010. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresource Technology 101(24): 9797-9802.

Kim, S. S.; Shenoy, A.; Agblevor, F. A. 2014. Thermogravimetric and kinetic study of Pinyon pine in the various gases. Bioresource Technology 156: 297-302.

Konai, N.; Raidandi, D.; Pizzi, A.; Girods, P.; Lagel, M. C.; Kple, M. 2016. Thermogravimetric analysis of anningre tannin resin. Maderas. Ciencia y Tecnología 18(2): 245-252.

Koufopanos, C. A.; Lucchesi, A.; Maschio, G. 1989. Kinetic modelling of the pyrolysis of biomass and biomass components. The Canadian Journal of Chemical Engineering 67(1): 75-84.

Lira, S.; Sáez, C.; Rodríguez, L.; Herrera, L.; Herrera, R. 2016. CO2 adsorption on agricultural biomass combustion ashes. Maderas. Ciencia y Tecnología 18(4): 607-616.

Lisperguer, J.; Bustos, X.; Saravia, Y.; Escobar, C.; Venegas, H. 2013. Effects of the characteristics of wood flour on the physico-mechanical and thermal properties of recycled polypropylene. Maderas: Ciencia y Tecnología 15(3): 321-336.

Liu, N. A.; Fan, W.; Dobashi, R.; Huang, L. 2002. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. Journal of Analytical and Applied Pyrolysis 63(2): 303-325.

Lundqvist, J.; Jacobs, A.; Palm, M.; Zacchi, G.; Dahlman, O.; Stålbrand, H. 2003. Characterization of galactoglucomannan extracted from spruce (Picea abies) by heat-fractionation at different conditions. Carbohydrate Polymers 51(2): 203-211.

Maiti, S.; Purakayastha, S.; Ghosh, B. 2007. Thermal characterization of mustard straw and stalk in nitrogen at different heating rates. Fuel 86(10): 1513-1518.

Mani, T.; Murugan, P.; Abedi, J.; Mahinpey, N. 2010. Pyrolysis of wheat straw in a thermogravimetric analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chemical Engineering Research and Design 88(8): 952-958.

Mante, O. D.; Agblevor, F. A.; Oyama, S. T.; McClung, R. 2012. The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass. Bioresource Technology 111: 482-490.

Márquez-Montesino, F.; Alcántara, T. C.; Rodríguez-Mirasol, J.; Rodríguez-Jiménez, J. J.; Martínez-Trinidad, T.; de la Rosa, A. B.; Ávalos-Rodríguez, M. A. 2001. Estudio del potencial energético de biomasa Pinus caribaea Morelet var. Caribaea (Pc) y Pinus tropicalis Morelet (Pt); Eucaliptus saligna Smith (Es), Eucalyptus citriodora Hook (Ec) y Eucalytus pellita F. Muell (Ep); de la provincia de Pinar del Río. Revista Chapingo Serie Ciencias Forestales y del Ambiente 7(1): 83-89.

Martínez, M. P.; Santianes, M. C.; Crespí, S. N.; Jiménez, J. C. 2008. Utilización de biogás en pilas de combustible. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas. 2-68.

Melgar, A.; Borge, D.; Pérez, J. F. 2008. Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de partícula de 2 a 19 mm. Dyna 75(155): 123-131.

Mészáros, E.; Várhegyi, G.; Jakab, E.; Marosvölgyi, B. 2004. Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy & Fuels 18(2): 497-507.

Miranda, I.; Mirra, I.; Gominho, J.; Pereira, H. 2017. Fractioning of bark of Pinus pinea by milling and chemical characterization of the different fractions. Maderas. Ciencia y Tecnología 19(2): 185-194.

Montoya A. J. I. 2013. Pirólisis rápida de Biomasa. Universidad Nacional de Colombia, Medellín, Colombia.

Müller-Hagedorn, M.; Bockhorn, H.; Krebs, L.; Müller, U. 2003. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis 68: 231-249.

Muñoz, M. A.; Castiblanco, E. A.; Cortés, F. B. 2015. Determinación de parámetros cinéticos para la pirólisis rápida de aserrín de pino pátula. Boletín del Grupo Español del Carbón (38): 9-11.

Niu, H.; Liu, N. 2015. Thermal decomposition of pine branch: Unified kinetic model on pyrolytic reactions in pyrolysis and combustion. Fuel 160: 339-345.

Ohtani, Y.; Mazumder, B. B.; Sameshima, K. 2001. Influence of the chemical composition of kenaf bast and core on the alkaline pulping response. Journal of Wood Science 47(1): 30-35.

Orfao, J. J. M.; Antunes, F. J. A.; Figueiredo, J. L. 1999. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel 78(3): 349-358.

Órfão, J. J. M.; Figueiredo, J. L. 2001. A simplified method for determination of lignocellulosic materials pyrolysis kinetics from isothermal thermogravimetric experiments. Thermochimica Acta 380(1): 67-78.

Park, H. J.; Dong, J. I.; Jeon, J. K.; Park, Y. K.; Yoo, K. S.; Kim, S. S.; Kim, J.; Kim, S. 2008. Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chemical Engineering Journal 143(1): 124-132.

Park, H. J.; Heo, H. S.; Park, Y. K.; Yim, J. H.; Jeon, J. K.; Park, J., Ryu Ch., Kim, S. S. 2010. Clean bio-oil production from fast pyrolysis of sewage sludge: effects of reaction conditions and metal oxide catalysts. Bioresource Technology 101(1): S83-S85.

Park, Y. H.; Kim, J.; Kim, S. S.; Park, Y. K. 2009. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. Bioresource Technology 100(1): 400-405.

Perlack, R. D.; Eaton, L. M.; Turhollow Jr, A. F.; Langholtz, M. H.; Brandt, C. C.; Downing, M. E.; Nelson, R. G. 2011. US billion-ton update: biomass supply for a bioenergy and bioproducts industry. Iowa State University.

Pétrissans, A.; Younsi, R.; Chaouch, M.; Gérardin, P.; Pétrissans, M. 2014. Wood thermodegradation: experimental analysis and modeling of mass loss kinetics. Maderas. Ciencia y Tecnología 16(2): 133-148.

Poletto, M.; Dettenborn, J.; Pistor, V.; Zeni, M.; Zattera, A. J. 2010. Materials produced from plant biomass: Part I: evaluation of thermal stability and pyrolysis of wood. Materials Research 13(3): 375-379.

Poletto, M.; Zattera, A. J.; Santana, R. M. 2012. Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresource Technology 126: 7-12.

Poletto, M. 2016. Effect of extractive content on the thermal stability of two wood species from Brazil. Maderas. Ciencia y Tecnología 18(3): 435-442.

Pottmaier, D.; Costa, M.; Oliveira, A. A. M.; Snape, C. 2015. The Profiles of Mass and Heat Transfer during Pinewood Conversion. Energy Procedia 66: 285-288.

Ramírez, Á.; García-Torrent, J.; Tascón, A. 2010. Experimental determination of self-heating and self-ignition risks associated with the dusts of agricultural materials commonly stored in silos. Journal of Hazardous Materials 175(1): 920-927.

Ramos-Carmona, S.; Pérez, J. F.; Pelaez-Samaniego, M. R.; Barrera, R.; Garcia-Perez, M. 2017. Effect of torrefaction temperature on properties of Patula pine. Maderas. Ciencia y Tecnología 19(1): 39-50.

Saravama, S.; Babu, B. 2006. Kinetic Parameter estimation of gelatin waste by termogravimetry. In National Conference on Enviromental Conservation (NEC-2006).

Sbirrazzuoli, N. 2013. Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way. Thermochimica Acta 564: 59-69.

Shebani, A. N.; Van Reenen, A. J.; Meincken, M. 2008. The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta 471(1): 43-50.

Sistema nacional de información forestal. Comisión nacional Forestal. 2016.

Soto, N. A.; Machado, W. R.; López, D. L. 2010. Determinación de los parámetros cinéticos en la pirólisis del pino ciprés. Química Nova 33(7): 1500-1505.
Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriken, U.B. 2011. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy 35 (2): 910-918.

Stelte, W.; Sanadi, A. R. 2009. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Industrial & engineering chemistry research 48(24): 11211-11219.

Stenseng, M.; Jensen, A.; Dam-Johansen, K. 2001. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. Journal of Analytical and Applied Pyrolysis 58: 765-780.

Tihay, V.; Gillard, P. 2011. Comparison of several kinetic approaches to evaluate the pyrolysis of three Mediterranean forest fuels. International Journal of Wildland Fire 20(3): 407-417.

Torres, A.; I. De Marco; B. M. Caballero; M. F. Laresgoiti; J. A. Legarreta; M. A. Cabrero; A. Gonzales; M. J. Chomon; Gondra, K. 2000. Recycling by pyrolysis of thermoset composites: Characteristics of the liquid and gaseous fuels obtained. Fuel 79(8): 897-902.

Toscano, G.; Duca, D.; Rossini, G.; Mengarelli, C.; Pizzi, A. 2015. Identification of different woody biomass for energy purpose by means of soft independent modeling of class analogy applied to thermogravimetric analysis. Energy 83: 351-357.

Tsai, W. T.; Lee, M. K.; Chang, Y. M. 2007. Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 98(1): 22-28.

Tufan, M.; Akbas, S.; Aslan, M. 2016. Decay resistance, thermal degradation, tensile and flexural properties of sisal carbon hybrid composites. Maderas. Ciencia y Tecnología 18(4): 599-606.

Tumuluru, J. S.; Sokhansanj, S.; Hess, J. R.; Wright, C. T.; Boardman, R. D. 2011. A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology 7(5): 384-401.

Uner, I. H.; Deveci, I.; Baysal, E.; Turkoglu, T.; Toker, H.; Peker, H. 2016. Thermal analysis of Oriental beech wood treated with some borates as fire retardants. Maderas. Ciencia y Tecnología 18(2), 293-304.

Vamvuka, D.; Kakaras, E.; Kastanaki, E.; Grammelis, P. 2003. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82(15): 1949-1960.

Várhegyi, G.; Grønli, M. G.; Di Blasi, C. 2004. Effects of sample origin, extraction, and hot-water washing on the devolatilization kinetics of chestnut wood. Industrial & Engineering Chemistry Research 43(10): 2356-2367.

Wang, G.; Li, W.; Li, B.; Chen, H. 2008. TG study on pyrolysis of biomass and its three components under syngas. Fuel 87(4): 552-558.

Waters, P. L. 1960. Fractional thermogravimetric analysis. Analytical Chemistry 32(7): 852-858.

William, H.; Saul, A.; William, T.; Brian, P. 1992. Numerical Recipes in C: The art of scientific computing, Cambridge University: Cambridge.

Wongsiriamnuay, T.; Tippayawong, N. 2010. Thermogravimetric analysis of giant sensitive plants under air atmosphere. Bioresource Technology 101(23): 9314-9320.

Yang, H.; Yan, R.; Chen, H.; Lee, H.; Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12), 1781-1788.

Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D. H.; Liang, D. T. 2006. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy & Fuels 20(1): 388-393.

Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. 2008. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93(1): 90-98.

Zhang, X.; Xu, M.; Sun, R.; Sun, L. 2006. Study on biomass pyrolysis kinetics. Journal of Engineering for Gas Turbines and Power 128(3): 493-496.

Zheng, G.; Koziński, J. A. 2000. Thermal events occurring during the combustion of biomass residue. Fuel 79(2): 181-192.

Zickler, G. A.; Wagermaier, W.; Funari, S. S.; Burghammer, M.; Paris, O. 2007. In situ X-ray diffraction investigation of thermal decomposition of wood cellulose. Journal of Analytical and Applied Pyrolysis 80(1): 134-140.




How to Cite

Juan Alvarado Flores, J., & Guadalupe Rutiaga Quiñones, J. (2018). Estudio de cinética en procesos termogravimétricos de materiales lignocelulósicos. Maderas-Cienc Tecnol, 20(2), 221–238. Retrieved from