Potential use of nir and visible spectroscopy to analyze chemical properties of thermally treated wood

Authors

  • Elaine Cristina Lengowski
  • Graciela Inês Bolzon de Muñiz
  • Umberto Klock
  • Silvana Nisgoski

Keywords:

Chemical analysis, Eucalyptus grandis, Pinus taeda, thermal modification, wood color, wood composition

Abstract

The modification of wood by thermal treatments produces characteristic changes in its chemical composition and surface color and can improve the structural and esthetic quality. The objective of this paper is to evaluate the potential of near infrared and visible spectroscopy to predict the modifications in chemical composition of Eucalyptys grandis and Pinus taeda after thermal treatment. Near infrared and visible spectra were collected directly on the longitudinal surface of wood samples. The thermally modified wood of both species showed higher content of lignin and extractives than the untreated wood. There was darkening of thermally modified wood, as a result of chemical modification caused by heat. The Near infrared/visible technique identified the groups that were modified by treatment. NIR and visible spectroscopy can be used to predict chemical composition of natural or thermally treated Eucalyptus grandis and Pinus taeda.

Downloads

Download data is not yet available.

References

Acquah, G.E.; Via. B.K.; Billor, N.; Fasina, O.O.; Eckhardt, L.G. 2016. Identifying plant part composition of forest logging residue using infrared spectral data and linear discriminant analysis. Sensors 16: 1375; doi:10.3390/s16091375.

American Society for Testing and Materials (ASTM). E1655-05 – Standard practices for infrared multivariate, quantitative analysis. ASTM, 2012.

Bächle, H.; Zimmer, B.; Wegener, G. 2012. Classification of thermally modified wood by FT-NIR spectroscopy and SIMCA. Wood Science and Technology 46 (6):1181–1192.

Bächle, H.; Zimmer, B.; Windeisen. E.; Wegener, G. 2010. Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy. Wood Science and Technology 44 (3):421–433.

Bekhta, P.; Proszyk, S.; Lis, B.; Krystofiak, T. 2014. Gloss of thermally densified alder (Alnus glutinosa Goertn.), beech (Fagus sylvatica L.), birch (Betula verrucosa Ehrh.), and pine (Pinus sylvestris L.) wood veneers. European Journal of Wood Products 72 (6):799–808.

Brito, J.O.; Silva, F.G.; Leão, M.M. Almeida, G. 2008. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology 99 (18): 8545–8548.

Cademartori, P.H.G.; Schneid, E.; Gatto, D.A.; Stangerlin, D.M.; Beltrame, R. 2013. Thermal modification of Eucalyptus grandis wood: variation of colorimetric parameters. Maderas-Cienc Tecnol 15(1): 57-64.

Camargos, J.A.A.; Gonçalez, J.C. 2001. A colorimetria aplicada como instrumento na elaboração de uma tabela de cores de madeira. Brasil Florestal 71: 30-41.

Chen, Y.; Fan Y, Gao J, Li H. 2012a. Coloring characteristics of in situ lignin during heat treatment. Wood Science and Technology 46(1): 33-40.

Chen, Y.; Fan Y, Gao J, Li H. 2012b.The effect of heat treatment on the chemical and color change of black locus (Robinia pseudoacacia) wood flour. BioResources 7(1): 1157-1170.

Chen, Y.; Tshabalala, M.A.; Gao, J, Stark, N.M, Fan, Y. 2014. Color and surface chemistry changes of extracted wood flour after heating at 120 C. Wood Science and Technology 48 (1):137-150.

Conte, B.; Missio, A.L.; Pertuzzatti, A.; Cademartori, P.H.G.; Gatto, D.A. 2014. Physical and colorimetric properties of Pinus elliottii var. elliottii thermally treated wood. Scientia Forestalis 42(104): 555-563.

De Paula, M.H.; Gonçalez, J.C.; De Mesquita, R.R.S.; Lima, C.M.; Rodrigues, T.O. 2016. Heat treatment effect on the color of the heartwood and sapwood in a Sapucaia tree (Lecythis pisonis Cambess). Australian Journal Basic and Applied Science 10(13): 108-115.

Esteves, B.; Pereira, H. 2008. Quality assessment of heat-treated wood by NIR spectroscopy. Holz als Roh- und Werkstoff 66 (5):323–332.

Esteves, B.; Videira, R.; Pereira, H. 2008. Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology 42(5): 369-384.

Esteves, B.; Videira, R.; Pereira, H. 2011. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Science and Technology 45 (4):661–676.

Esteves, B.M.; Pereira, H.M. 2009. Wood modification by heat treatment: a review. BioResources 4(1): 370-404.

Fackler, K.; Schwanninger, M. 2010. Polysaccharide degradation and lignin modification during brown rot of spruce wood: a polarised Fourier transform near infrared study. Journal of Near Infrared Spectroscopy 18(6):403–416.

Fan, Y.; Gao, J.; Chen, Y. 2010. Colour response of black locust (Robinia pseudoacacia L.) to solvent extraction and heat treatment. Wood Science and Technology 44 (4): 667-678.

Fearn, T.; Riccioli, C.; Garrido-Varo, A.; Guerrero-Ginel, J.E. 2009. On the geometry of SNV and MSC. Chemometrics and Intelligent Laboratory Systems 96: 22–26. doi:10.1016/j.chemolab.2008.11.006

Freitas, A. S. Gonçalez, J.C. Del Menezzi, C.H. 2016. Thermomechanical treatment and the effects on the properties of Simarouba amara (Aubl.). Floresta e Ambiente 23(4): 565-572.

Garcia, R.A.; Oliveira, N.S.; Nascimento, A.M.; Souza, N.D. 2014. Colorimetry of woods from Eucalyptus and Corymbia genus and its correlation with density. Cerne 20(4): 509-517.

Gierlinger N, Jacques D, Grabner M, Wimmer R, Schwanninger M, Rozenberg P, Pâques LE. 2004. Colour of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees 18 (1):102-108.

Gonzáles-Peña, M.M.; Curling, S.F.; Hale, M.D.C. 2009. On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer Degradation and Stability 94(12): 2184–2193.

Griebeler, C.G.O. 2013. Colorimetria da madeira de Eucalyptus grandisW.Hill ex Maiden modificada termicamente. Master thesis of the Federal University of Parana.

Hein, P.R.G.; Lima, J.T.; Chaix, G. 2009. Effects of sample preparation on NIR spectroscopic estimation of chemical properties of Eucalyptus urophylla S.T. Blake wood. Holzforschung 64(1): 45–54.

Hikita, Y.; Toyoda, T.; Azuma, M. 2001. Weathering testing of timber – discoloration. In: Inamura Y. High performance utilization of wood for outdoor uses. Kyoto, Japão, Press-Net.

Huang, X.; Kocaefe, D.; Kocaefe, Y.; Pichette, A. 2018. Combined effect of acetylation and heat treatment on the physical, mechanical and biological behavior of jack pine (Pinus banksiana) wood. European Journal of Wood Products 76: 525–540.

Karlinasari, L.; Sabed, M.; Wistara, I.N.J.; Purwanto, Y.A. 2014. Near infrared (NIR) spectroscopy for estimating the chemical composition of (Acacia mangium Willd.) wood. Journal of Indian Academic Wood Science 11(2): 162-167.

Kumar, N.; Bansal, A.; Sarma, G.S.; Rawal, R.K. 2014. Chemometrics tools used in analytical chemistry: An overview. Talanta 123:186–199.

Kuzman, M.K.; Kutnar, A.; Ayrilmis, N.; Kariz, M. 2015. Effect of heat treatment on mechanical properties of selected wood joints. European Journal of Wood Products 73: 689–691.

Li, M. Y.; Cheng, S. C.; Li, D.; Wang, S. N.; Huang, A. M.; Sun, S. Q. 2015. Structural characterization of steam heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chinese Chemical Letters 26(2) 221-225.

Mehrotra, R.; Singh, P.; Kandpal, H. 2010. Near infrared spectroscopic investigation of the thermal degradation of Wood. Thermochimica Acta 507–508: 60–65.

Méndez-Mejías, L.D.; Moya, R. 2016. Effects on density, shrinking, color changing and chemical surface analysis through FTIR of Tectona grandis thermo-treated. Scientia Forestalis 44(122): 811-820.

Michell, A.J.; Schimleck, L.R. 1996. NIR spectroscopy of woods from Eucalyptus globulus. Appita Journal 49:23–26.

Militz,H.; Altgen,M. 2016. Processes and properties of thermally modified wood manufactured in Europe. In: Deterioration and protection of sustainable biomaterials. ACS Symposium Series 1158 (16): 269–285.

Mitsui, K. 2004. Changes in the properties of light-irradiation wood with heat-treatment. Part 2. Effect of light-irradiation time and wavelength. Holz als Roh-und Werkstoff 62(1): 23-30.

Mitsui, K.; Inagaki, T.; Tsuchikawa, S. 2008. Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy. Biomacromolecules 9(1): 286–288.

Moura, L.F.; Brito, J.O. 2011. Effect of thermal rectification on colorimetric properties of Eucalyptus grandis and Pinus caribaea var hondurensis woods. Scientia Forestalis 39(89):69-76.

Olarescu, M.C.; Campean, M.; Ispas, M.; Cosereanu, C. 2014. Effect of thermal treatment on some properties of lime wood. European Journal of Wood Products 72 (4): 559–562.

Persze, L.; Tolvaj, L. 2012. Photodegradation of wood at elevated temperature: colour change. Journal of Photochemistry and Photobiology B: Biology 108: 44-47.

Pertuzzatti, A. 2016. Physical properties of Pinus elliottii var. elliottii thermally treated wood under two different atmospheres. Ciência da Madeira 7(15): 7-15, 2016.

Pincelli, A.L.P.S.M.; Moura, L.F.; Brito, J.O. 2012. Effect of thermal retification on colors of Eucalyptus saligna and Pinus caribaea woods. Maderas-Cienc Tecnol 14(2): 239-248.

Polleto, M.; Zattera, A.J.; Santana, R.M.C. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126: 7–12.

Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal of Molecular Structure; 988: 65-72.

Poubel, D.S.; Garcia, R.A.; Santos, W.A.; Oliveira, G.L.; Abreu, H.S. 2013. Efeito da termorretificação nas propriedades físicas e químicas da madeira de Pinus caribaea. Cerne 19 (3): 391-98.

Prades, C.; Gomes-Sanchez, I.; Garcia-Olmo, G.; Gonzales- Hernadez, F.; Gonzales-Adrados J.R. 2014. Application of VIS/NIR spectroscopy for estimating chemical, physical and mechanical properties of cork stoppers. Wood Science and Technology 48 (4):811–830.

Schwanninger, M.; Hinterstoisser, B.; Gierlinger, N.; Wimmer, R.; Hanger, J. 2004. Application of fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood. Holz als Roh- und Werkstoff 62 (6):483–485.

Schwanninger, M.; Rodrigues, J.C. Fackler, K. 2011. A review of band assignments in near infrared spectra of wood and wood components. Journal of Near Infrared Spectroscopy 19: 287-308.

Severo, E.T.; Calonego, F.W.; Sansígolo, C.A. 2012. Physical and chemical changes in juvenile and mature woods of Pinus elliottii var. elliottii by thermal modification. European Journal of Wood and Wood Products 70(5): 741–747.

Silva, M.R. 2012. Efeito do tratamento térmico nas propriedades químicas, físicas e mecânicas em elementos estruturais de Eucalyptus citriodora e Pinus taeda. PhD Thesis of the University of São Paulo.

Stangerlin, D.M.; Costa, A.F.; Gonçalez, J.C.; Pastore, T.C.M.; Garlet, A. 2013. Monitoring of biodeterioration of three Amazonian wood species by the colorimetry technique. Acta Amazonica 43: 429–438.

Technical Association of Pulp and Paper Industry. TAPPI. T204 – om 97. 2004. Solvent extractives of wood and pulp. In: Tappi Test Methods. TAPPI Press, Norcross, GA.

Technical Association of Pulp and Paper Industry. TAPPI. T211 – om 02. 2004. Ash in wood, pulp, paper and paperboard: combustion at 525°C. In: Tappi Test Methods. TAPPI Press, Norcross, GA, 2004.

Technical Association of Pulp and Paper Industry. TAPPI. T222 – om 02. 2004. Acid-insoluble lignin in wood and pulp. In: Tappi Test Methods. TAPPI Press, Norcross, GA.

Tong, l.; Zhang, W. 2016. Using Fourier transform near-infrared spectroscopy to predict the mechanical properties of thermally modified southern pine wood. Applied Spectroscopy 70(10): 1–9.

Torres, S.S.; Jomaa, W.; Marc, F. Puiggali, J.R. 2012. Colour alteration and chemistry changes in oak wood (Quercus pedunculata Ehrh.) during plain vacuum drying. Wood Science Technology 46: 177–191.

Tsuchikawa, S.; Schwanninger, M. 2013. A review of recent near-infrared research for wood and paper (Part 2). Applied Spectroscopy Review 48:560-587.

Varga, D.; Van der Zee, M.E. 2008. Influence of steaming on selected wood properties of four hardwood species. Holz als Roh-und Werkstoff 66(1): 11-18.

Via, B.K.; Zhou, C. Acquah, G.; Jiang, W.; Eckhardt, L. 2014. Near infrared spectroscopy calibration for wood chemistry: which chemometric technique is best for prediction and interpretation? Sensors 14: 13532-13547.

Yildiz, S.; Tomak, E. D.; Yildiz, U. C.; Ustaomer, D. 2013. Effect of artificial weathering on the properties of heat treated wood. Polymer Degradation and Stability 98(8): 1419-1427.

Zanuncio, A.J.V.; Motta, J.P.; Da Silveira, T.A.; Farias, E.S.; Trugilho, P.F. 2014a. Pysical and colorimetric changes in Eucalyptus grandis wood after heat treatment. Bioresources 9(1): 293-302.

Zanuncio, A.J.V.; Nobre, J.R.C.; Motta, J.P.; Trugilho, P.F. 2014b. Química e colorimetria da madeira de Eucalyptus grandis w. Mill ex Maiden termorretificada. Revista Árvore38(4): 765-770.

Zanuncio, A.J.V.; Nobre, J.R.C.; Motta, J.P.; Trugilho, P.F. 2014c. Heat treatment and color of Eucalyptus grandis wood. Floresta e Ambiente 21(1): 85-90.

Downloads

Published

2018-10-01

How to Cite

Cristina Lengowski, E., Inês Bolzon de Muñiz, G., Klock, U., & Nisgoski, S. (2018). Potential use of nir and visible spectroscopy to analyze chemical properties of thermally treated wood. Maderas. Ciencia Y Tecnología, 20(4), 627–640. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3228

Issue

Section

Article