Assessing the natural durability of different tropical timbers in soil-bed tests


  • Serafín Colín-Urieta
  • Artemio Carrillo-Parra
  • José Guadalupe Rutiaga-Quiñones
  • Pablo López-Albarran
  • Rosalio Gabriel Parra
  • José Javier Corral-Rivas


Decay, ground contact, mass loss, MOE loss, tropical wood


Ground contact speeds up timber decay because of the large number of microorganisms in soil. This study, we assessed the natural durability of seven tropical species using the European standard EN 807 (2001). We embedded samples of Dalbergia granadillo, Cordia elaeagnoides, Swietenia humillis, Tabebuia donell-smithii, Hura polyandra, Enterolobium cyclocarpum and Tabebuia rosea and temperate species Fagus sylvatica (as a control) in sandy, clay-sandy-loam and clay-loam for 8, 16, 24 and 32 weeks. We evaluated durability of the samples by determining the mass loss and modulus of elasticity (MOE) loss. The results varied significantly (p < 0.001) depending on timber species and soil type considered. The D. granadillo and C. elaeagnoides were the most durable, with mass losses of 4.5%, 6.5% and MOE losses of 4.5%, 20.5%, respectively. F. sylvatica, T. rosea and E. cyclocarpum samples were the least durable, with mass losses of 22.3-25% and MOE losses of 35.8-59.8%, respectively. Decay was most aggressive in sandy-clay-loam soil followed by the clay-loam soil and finally the sandy soil.


Download data is not yet available.


Ali, A.C.; Uetimane, E.; Råberg, U.; Terziev, N. 2011. Comparative natural durability of five wood species from Mozambique. International Biodeterioration & Biodegradation 65(6):768-776. [ Links ]

Bravery, A.F. 1975. Micromorphology of decay in preservative treated wood. In Liese, W (Ed.), Biological Transformation of Wood by Microorganisms. Springer: Berlin. [ Links ]

Brischke, C.; Welzbacher, C.R.; Rapp, A.O.; Augusta, U.; Brandt, K. 2009. Comparative studies on the in-ground and above-ground durability of European oak heartwood (Quercus petraea Liebl. and Quercus robur L.). European Journal of Wood and Wood Products 67(3):329-338. [ Links ]

Brischke, C.; Olberding, S.; Meyer, L.; Bornemann, T.; Welzbacher, C.R. 2013. Intrasite variability of fungal decay on wood exposed in ground contact. International Wood Products Journal 4(1):37-45. [ Links ]

Deutsches Institut für Normung. DIN. 1978. Prüfung von Holz DIN EN-52 186. 1978. Biegeversuch. [ Links ]

De Avila, R.; Gonzales, P.H; Luiz, A.; Alberto, D. 2016. Decay resistance of four fast-growing eucalypts wood exposed to three types of fields. Maderas-Cienc Tecnol 18(1):33-42. [ Links ]

Eaton, R.A.; Halle, M.D.C. 1993. Wood: decay, pests and protection. Chapman & Hall: London. [ Links ]

European standard. EN. 2001. Wood preservatives. Determination of the effectiveness against soft rotting micro-fungi and other soil in-habiting micro-organisms. EN-807. 2001 [ Links ]

García, E. 1973. Modificación al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). Instituto de Geografía, Universidad Nacional Autónoma de México, Dirección General de Publicaciones: México. [ Links ]

Gersonde, M.; Kerner, W. 1984. Soft rot test with soils of different origins. In Proceedings IRG Annual Meeting, IRG/WP/2226. The International Research Group on Wood Protection: Stockholm, Sweden. [ Links ]

Hardie, K. 1980. A review of strength testing as a measure of biodeterioration of wood and wood based materials. Int Biodet Bull 16(1):1-8. [ Links ]

Hillis, W.E. 1972. Formation and properties of some wood extractives. Phytochemistry 11(4):1207-1218. [ Links ]

Jebrane, M.; Pockrandt, M.; Terziev, N. 2014. Natural durability of selected larch and Scots pine heartwoods in laboratory and field tests. International Biodeterioration and Biodegradation 91:88-96. [ Links ]

Kadir, R. 2017. Toxic effects of three selected Malaysian timbers plant extracts against subterranean termites. Maderas-Cienc Tecnol 19(4):417-432. [ Links ]

Leightley, L.E.; Russell, W.I. 1980. Soft rot decay of Eucalytus maculata Hook in different soils from Queensland, Autralia. In Proceedings IRG Annual Meeting, IRG/WP/1113. The International Research Group on Wood Protection: Stockholm, Swedem [ Links ]

Liese, W. 1955. On the decomposition of the cell wall by micro-organisms. In: Record of the annual British wood preserving association. [ Links ]

Machek, L.; Derksen, A.M.; Sierra-Alvarez, R. 1997. Assessment of wood decay in small-scalle unsterile soil-bed tests. In Proceedings IRG Annual Meeting, IRG/WP 97-20111. The International Research Group on Wood Protection: Vancouver, Canada. [ Links ]

Machek, L.; Militz, H.; Sierra-Alvarez, R. 2001. The use of an acoustic technique to assess wood decay in laboratory soil-bed test. Wood Science and Technology 34(6):467-472. [ Links ]

Meyer, L.; Brischke, C.; Melcher, E.; Brandt, K.; Lenz, M.T.; Soetbeer, A. 2014. Durability of English oak (Quercus robur L.) comparison of decay progress and resistance under various laboratory and field conditions. International Biodeterioration & Biodegradation 86:79-85. [ Links ]

Nami, S.; Brischke, C.; Rapp, A.O.; Imamura, Y. 2006. Biological effectiveness of didecyl dimethyl ammonium tetrafluoroborate (DBF) against basidiomycetes following preconditioning in soil bed tests. Wood Science and Technology 40(1):63-71. [ Links ]

Norma Oficial Mexicana. NOM. 2000. NOM-021-RECNAT-2000. Secretaría de Medio Ambiente y Recursos Naturales. [ Links ]

Organización Internacional de las maderas tropicales. OIMT. 2015. Reseña anual y evaluación de la situación mundial de las maderas 2013-2014. Yokohama, Japón. [ Links ]

Ross, R.J.; Pellerin, R.F. 1994. Non-Destructive Testing for Assessing Wood Members in Structure. Forest Products Laboratory. General technical report: FPL-GTR 70. [ Links ]

Savory, J.G. 1955. The role of microfungi in the decomposition of wood. In: Record of the annual British wood preserving association. [ Links ]

Schmidt, O. 2006. Wood and tree fungi. Biology, damage, protection and use. Springer: Berlin. [ Links ]

Syofuna, A.; Banana, A.; Nakabonge, G. 2012. Efficiency of natural Wood extractives as Wood preservatives against termite attack. Madera-Cienc Tecnol 14(2):155-163. [ Links ]

SEMARNAT. 2016. Anuario Estadístico de la Producción Forestal 2015. Secretaría del Medio Ambiente y Recursos Naturales: México. [ Links ]

Taylor, A.M. 2004. Environmental effects on heartwood extractive content and their consequences for natural durability in Douglas-fir and Western Redcedar. Ph D. Thesis, Oregon State University, Oregon, USA. Available<Available > (access date:12/03/2018) [ Links ]

Tsoumis, G. 1991. Science and technology of wood: Structure, properties, utilization. Chapman & Hall: New York. [ Links ]

Wakeling, R. 2006. Is field test data from 20 x 20mm stakes reliable? Effects of decay hazard, decay type and preservative depletion hazard. In Proceedings IRG Annual Meeting, IRG/WP 06-20327. The International Research Group on Wood Protection: Tromsø, Norway. [ Links ]

Walkley, A.; Black, I.A. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29-37. [ Links ]




How to Cite

Colín-Urieta, S., Carrillo-Parra, A., Rutiaga-Quiñones, J. G., López-Albarran, P., Gabriel Parra, R., & Corral-Rivas, J. J. (2019). Assessing the natural durability of different tropical timbers in soil-bed tests. Maderas-Cienc Tecnol, 21(2), 231–238. Retrieved from