Energy valorization of woody biomass by torrefaction treatment: a brazilian experimental study

Authors

  • Clarissa Gusmão Figueiró
  • Benedito Rocha Vital
  • Angélica de Cássia Oliveira Carneiro
  • Carlos Miguel Simões da Silva
  • Mateus Alves Magalhães
  • Lucas de Freitas Fialho

Keywords:

Energy purposes, Eucalyptus wood chips, planted forests, semi-continuous screw reactor, thermal treatment

Abstract

Brazilian productivity of eucalyptus trees is one of the highest in the world, and it has sustainable and viable conditions to supply the demand for woody biomass in a large quantity and diversity. This favorable situation makes Brazil one of the countries with the greatest potential for the production development of torrefied woody biomass on a commercial scale. Torrefaction is a mild pyrolysis applied to increase the energy quality of the feedstock. The aim of this study was to evaluate the Brazilian potential of woody biomass torrefaction for energy purposes. An experimental study was performed evaluating this thermal treatment of eucalyptus wood chips on a semi-continuous screw reactor developed by a Brazilian university. The results showed the increases in the energy quality of eucalyptus wood chips as a function of torrefaction temperature and time. This thermal treatment was technically feasible for the hygroscopicity reduction and the increases of fixed carbon and calorific values of the woody biomass.

Downloads

Download data is not yet available.

References

Acharjee, T.C.; Coronella, C.J.; Vasquez, V.R. 2011. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource Technology 102: 4849-4854.

Acharya, B.; Dutta, A.; Minaret, J. 2015. Review on comparative study of dry and wet torrefaction. Sustainable Energy Technologies and Assessments 12: 26-37.

Almeida, G.; Brito, J.O.; Perré, P. 2010. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresource Technology 101: 9778-9784.

Associação Brasileira de Normas Técnicas. ABNT-NBR. 1983. Carvão Vegetal - Análise Imediata. ABNT-NBR 8112. 1983. ABNT-NBR:Rio de Janeiro.

Bach, Q.V.; Skreiberg, Ø. 2016. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renewable and Sustainable Energy Reviews 54: 665-677.

Da Silva, C.M.S.; Carneiro, A.C.O.; Pereira, B.L.C.; Vital, B.R.; Alves, I.C.N.; Magalhães, M.A. 2016. Stability to thermal degradation and chemical composition of woody biomass subjected to the torrefaction process. European Journal of Wood and Wood Products 4(6): 845-850.

Da Silva, C.M.S.; Carneiro, A.C.O.; Vital, B.R.; Figueiró, C.G.; Fialho, L.F.; Magalhães, M.A.; Carvalho, A.G.; Cândido, W.L. 2018. Biomass torrefaction for energy purposes - Definitions and an overview of challenges and opportunities in Brazil. Renewable and Sustainable Energy Reviews 82: 2426-2432.

Deutsches Institut Für Normung. DIN-EN. 2010. Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference method. DIN-EN 14774-1. 2010. Berlim: CEN. 10p.

Deutsches Institut Für Normung. DIN-EN. 2010. Determination of calorific value. DIN-EN 14918. 2010. Belim: CEN. 63p.

Deutsches Institut Für Normung. DIN-EN. 2010. Determination of bulk density. DIN-EN 15103. 2010. Berlim: CEN . 14p.

Deutsches Institut Für Normung. DIN-EN. 2011. Determination of total content of carbon, hydrogen and nitrogen - Instrumental methods. DIN-EN 15104. 2011. Berlim: CEN . 15p.

Du, S.; Chen, W.; Lucas, J.A. 2014. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection. Bioresource Technology 161 :333-339.

Esteves, B.M.; Pereira, H.M. 2009. Wood modification by heat treatment: a review. BioResources 4 (1): 370-404.

Hill, S.J.; Grigsby, W.J.; Hall, P.W. 2013. Chemical and cellulose crystallite changes in Pinus radiata during torrefaction. Biomass and Bioenergy 56: 92-98.

Indústria Brasileira de Árvores. IBÁ. 2017. Report 2017. Brazil. 80p.

Koppejan, J.; Sokhansanj, S.; Melin, S.; Madrali, S. 2012. Status overview of torrefaction technologies. IEA Bioenergy Task 32. 54 p.

Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91: 147-154.

Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. 2016. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews 53: 235-242.

Parparita, E.; Brebu, M.; Uddin, M.A.; Yanik, Y.; Vasile, C. 2014. Pyrolysis behaviors of various biomasses. Polymer Degradation and Stability 100: 1-9.

Pereira, B.L.C.; Carneiro, A.C.O.; Carvalho, A.M.M.L.; Colodette, J.L.; Oliveira, A.C.; Fontes, M.P.F. 2013. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources 8(3): 4574-4592.

Pérez, L.E.A.; Segura, C.; Espinoza, D.; Radovic, L.R.; Jiménez, R. 2015. Torrefaction of Pinus radiata and Eucalyptus globulus: A combined experimental and modeling approach to process synthesis. Energy for Sustainable Development 29: 13-23.

Shen, D.K.; Gu, S.; Bridgwater, A.V. 2010. The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicelluloses. Carbohydrate Polymers 82: 39-45.

Stape, J.L.; Binkley, D.; Ryan, M.G.; Fonseca, S.; Loss, R.A.; Takahashi, E.N.; Silva, C.R.; Hakamada, R.E.; Ferreira, J.M.A.; Lima, A.M.N.; Gava, J.L.; Leita, F.P.; Andrade, H.B.; Alves, J.M.; Silva, G.G.C.; Azevedo, M.R. 2010. The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management 259: 1684-1694.

Swithenbank, J.; Chen, Q.; Zhang, X.; Sharifi, V.; Pourkashanian, M. 2011. Wood would burn. Biomass and Bioenergy 35(3): 999-1007.

Uslu, A.; Faaij, A.P.C.; Bergman, P.C.A. 2008. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33(8): 1206-1223.

Van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. 2011. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy 35: 3748-3762.

Vital, B.R.; Carneiro, A.C.O.; Pereira, B.L.C. 2013. Qualidade da madeira para fins energéticos. In: Santos, F.; Colodette, J.L.; Queiroz, J.H. (Eds.). Bioenergia & Biorrefinaria - Cana-de-açúcar & Espécies Florestais, Viçosa, MG. 271-298.

Wild, M.; Deutmeyer, M. 2016. Possible effects of torrefaction on biomass trade. IEA Bioenergy: Task 40. 68p.

Yue, Y.; Singh, H.; Singh, B.; Mani, S. 2017. Torrefaction of sorghum biomass to improve fuel properties. Bioresource Technology 232: 372-379.

Downloads

Published

2019-07-01

How to Cite

Gusmão Figueiró, C., Rocha Vital, B., de Cássia Oliveira Carneiro, A., Miguel Simões da Silva, C., Alves Magalhães, M., & de Freitas Fialho, L. (2019). Energy valorization of woody biomass by torrefaction treatment: a brazilian experimental study. Maderas. Ciencia Y Tecnología, 21(3), 297–304. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3466

Issue

Section

Article

Most read articles by the same author(s)