Analysis of wood products from an added value perspective: The uruguayan forestry case
Keywords:
Bioeconomy, forest plantations, forest products, solid wood products, wood industryAbstract
Uruguay has a forest resource of 1 million ha plantation of fast-growing eucalyptus and pine. Short-fiber pulp is the country second export product in value, but there is also a significant production of plywood and graded kiln-dried timber from both species, used mainly for appearance applications. However, the value chain of the wood industry is not yet fully developed, particularly for pine. This study classified different existing and potential wood products using added value as criteria, calculated at the industry level by adopting a system of inputs and outputs. Hypothetical plants to manufacture these products were technical and economically analyzed: thermally modified timber, cross laminated timber, laminated veneer lumber, pine timber, bleached Eucalyptus kraft pulp, pine bleached chemical thermo-mechanical, medium density fiberboards, oriented strand board and a power plant fueled with forest biomass. The data used for this study was obtained from the final project of undergraduate engineer students of the Faculty of Engineering, Universidad de la República, Uruguay, except for the eucalyptus pulp mill, which was proposed by the authors. The results showed that wood products obtained from logs that are the main objective of the plantation presented a higher added value than those manufactured from forest residues, thinnings or chips from the sawmilling industry. Solid wood products for appearance or structural applications are at the top of added value list, considering value added per product, unit of biomass or unit of forest land per year. The integration of the value chain of the products analyzed, linking solid wood products with panels or pulp, has the potential to boost the addition of value of the forest biomass in Uruguay.
Downloads
References
Anaya, A.; Fernández, R.; Galicia, M.; Montesinos, I. 2016. Evaluating preliminary investment feasibility. ChemEng 47-54.
Anzolabehere, M.; Nan, S. 2014. La industria de transformación mecánica de madera en Uruguay: estimación del valor agregado en la producción de madera aserrada (Undergraduate project). Facultad de Ciencias Sociales - Universidad de la República, Montevideo, Uruguay.
Ayroud, A.M. 1997. High yield and very high yield pulping, in: Pulp and Paper Manufacture. Canadian Pulp and Paper Association: Montreal, Canada, pp. 159-212.
Bajpai, P. 2015. State-of-the-Art Pulp Mills, in: Bajpai, P. (Ed.), Green Chemistry and Sustainability in Pulp and Paper Industry. Springer International Publishing, Cham, pp. 217-246.
Baño, V.; Godoy, D.; Vega, A. 2016.Experimental and numerical evaluation of cross-laminated timber (CLT) panels produced with pine timber from thinnings in Uruguay. Presented at the World Conference on Timber Engineering, Wien, Austria, p. 8.
Barragán, J.; Cantera, L.; Di Pascua, I.; López, L. 2016. Tratamiento térmico de madera (Undergraduate project). Universidad de la República, MontevideoUruguay.
Batista, D.C.; de Muñiz, B.; Ines, G.; da Silva Oliveira, J.T.; Paes, J.B.; Nisgoski, S. 2016. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood - part 1: cell wall polymers and extractive contents. Maderas-CiencTecnol 18(2): 273-284.
Borche, A.; Gómez, L.; Mangado, I.; Marmissolle, S.; Muiño, D. 2012. Generación de energía eléctrica a partir de biomasa (Undergraduate project). Universidad de la República, Montevideo.
Boscana, M.; Boragno, L. 2017. Estadísticas Forestales 2017 Extracción - Producción - Consumo -Mano de Obra - Comerció exterior. Dirección General Forestal - Ministerio de Agricultura, Ganadería y Pesca: Montevideo, Uruguay.
Brizolara, M.; Crovetto, M.; Czarnievicz, M.; Díaz, M.; Riccone, V.; Vázquez, D. 2015. Diseño de una planta de fabricación de tableros de virutas orientadas (OSB) (Undergraduate project). Universidad de la República, Montevideo.
Bussoni, A.; Cabris, J. 2010.A financial evaluation of two contrasting silvicultural systems applicable to Pinustaeda grown in north-east Uruguay. South For 72(3-4): 163-171.
Caamaño, A.; Esteves, M.; Formoso, M.; Laborde, G.; Lange, A. 2016. Diseño de una planta de fabricación de LVL (Undergraduate project). Universidad de la República, Montevideo.
Cabrera, M.; Cocchiararo, F.; Figares, M.;Giradello, S.; Palombo, V. 2018. Producción de pasta de celulosa quimio-termo-mecánica a partir de madera de pino (Undergraduateproject). Universidad de la República. Montevideo. Uruguay
Candan, Z.;Shaler, S.; Paredes, J.; Edgar, R. 2017.Enhancing dimensional stability of oriented strand composites within biorefinery. Maderas-CiencTecnol 19(3): 387-398.
Clark, J. 2004. Forest policy for sustainable commodity wood production: an examination drawing on the Australian experience. Ecol Econ 50: 219-232.
Cubbage, F.; Mac Donagh, P.; Balmelli, G.; Morales-Olmos, V.; Bussoni, A.; Rubilar, R.; De La Torre, R.; Lord, R.; Huang, J.;Afonso-Hoeflich, V.; Murara, M.; Kanieski, B.; Hall, P.; Yao, R.; Adams, P.; Kotze, H.; Monges, E.; Hernández-Pérez, C.; Wikle, J.; Abt, R.; Gonzalez, R.; Carrero, O. 2014.Global timber investments and trends, 2005-2011. N Z J ForSci 44(Suppl 1):S7: 1-12.
Dhubháin, A.N.;Fléchard, M.C.;Moloney, R.; O’Connor, D. 2009.Assessing the value of forestry to the Irish economy - An input-output approach. For Policy Econ 11: 50-55.
Diesen, M. 2007.Economics of the Pulp and Paper Industry.2nd ed. Finnish Paper Engineers’ Association: Finland.
Dieste, A. 2014. Plan de inversiones en maquinaria y equipos (No. 3). Dirección Nacional de Industrias - Ministerio de Industrias, Energía y Minería: Montevideo. 32p.
Dieste, A. 2012. Programa de promoción de exportaciones de productos de madera (No. 1). Dirección Nacional de Industrias - Ministerio de Industrias, Energía y Minería: Montevideo. 35p.
Dieste, A.; Clavijo, L.; Torres, A.I.; Barbe, S.; Oyarbide, I.; Bruno, L.; Cassella, F. 2016.Lignin from Eucalyptus spp. Kraft Black Liquor as Biofuel. Energy Fuels 30: 10494-10498.
Dirección General Forestal. MGAP. 2016. Extracción, producción y consumo. Ministerio de Ganadería Agricultura y PesPesca - Dirección General Forestal Uruguay < Ministerio de Ganadería Agricultura y PesPesca - Dirección General Forestal Uruguay www.mgap.gub.uy > (Consulted 01/10/2017)
Dirección Nacional de Transporte. 2015. Comunicado - Precios de Referencia. Ministerio de Transporte y Obras Públicas: Uruguay < Ministerio de Transporte y Obras Públicas: Uruguay www.mtop.gub.uy >. (Consulted 01/10/2017)
FAO. 2017. FAOSTAT. < www.faostat.fao.org > (Consulted 01/10/2017)
Fardim, P.; Liebert, T.; Heinze, T. 2013. Pulp Fibers for Papermaking and Cellulose Dissolution, in: Navard, P. (Ed.), The European Polysaccharide Network of Excellence (EPNOE): Research Initiatives and Results. Springer Vienna: Vienna, pp. 253-282.
Fierro, I.;Levrini, L.; Marinello, G.; Tuana, R. 2009. Aserradero cogenerador de energía eléctrica (Undergraduate project). Universidad de la República, Montevideo. Uruguay.
García, M.P.; Juli, J.; Larratea, G.; Levy, T.; Palomas, G.; Sposaro, F. 2018. Diseño de planta de producción de paneles CLT - cross laminated timber (Undergraduate project). Universidad de la República, Montevideo.
Goodison, A.; Hall, P.; Jack, M.; Barry, L. 2013.WoodScape Study - Technology and Markets. SCION: New Zealand
Gullichsen, J.; Paulapuro, H. 1999.Chemical Pulping. Gummerus Printing: Jyväskylä.
Karvonen, J.; Halder, P.; Kangas, J.; Leskinen, P. 2017.Indicators and tools for assessing sustainability impacts of the forest bioeconomy. For Ecosyst 4(1): 2.
Kato, T. 1999. Japan’s Wood Products Import and Forest Sector - Overview of the changes, in: Global Concerns for Forest Resource Utilization. Springer Science + Business Media: Dordrecht, pp. 337-344.
Liao, Y.; Tu, D.; Zhou, J.; Zhou, H.; Yun, H.; Gu, J.; Hu, C. 2017.Feasibility of manufacturing cross-laminated timber using fast-grown small diameter Eucalyptus lumbers. Constr Build Mater 132: 508-515.
Méndez, D.; Raffo, R.; Rivera, N.; Silva, D. 2016.Paneles del Sur (Undergraduate project). Universidad de la República, Montevideo. Uruguay.
Moya, L.; Domenech, L.; Cardoso, A.; O´Neill, H.; Baño, V. 2017.Proposal of visual strength grading rules for Uruguayan pine timber. Eur J Wood Wood Prod 75(6): 1017-1019.
Oliver, R.; Venables, D. 2012. Efforts to promote use of wood in the EU region. Forest Industries Intelligence Limited: North Yorkshire, United Kingdom.
Onarheim, K.; Kangas, P.; Hankalin, V.; Santos, S. 2016. Understanding the cost of retroffiting CCS in a Pulp Mill - Impact of the CO2 price to the levelised cost of pulp production, in: Performance and Cost of Retroffiting CCS in Pulp and Paper Industry - Papers for Members’ Reference, 2016/TR5. IEA Environmental Projects Ltd.: Cheltenham, United Kingdom, p.28.
Piter, J.C.; Cotrina, A.D.; Sosa-Zitto, M.A.; Stefani, P.M.; Torrán, E.A. 2007. Determination of characteristic strength and stiffness values in glued laminated beams of Argentinean Eucalyptus grandis according to European standards. Holz AlsRoh-Werkst 65(4): 261-266.
PROBIO. 2013. Análisis del estado del arte a nivel del sector forestal con una perspectiva global. Informe final. PNUD: Montevideo. < www.probio.dne.gub.uy >(Consulted 01/10/2017)
Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; Allwood, J.; Dupree, P.; Linden, P.F.; Scherman, O. 2017. The wood from the trees: The use of timber in construction. Renew Sustain Energy Rev 68(Part 1): 333-359.
Rasmussen, E. 2012. Industry, Commerce and Agribusiness - Russia Business Group - European Bank for Reconstruction and Development. Northern Dimension Business Council: Saint Petersburg, p.16.
Sathre, R.; Gustavsson, L. 2009.Process-based analysis of added value in forest product industries. For Policy Econ 11: 65-75.
Saviana, J.; Sosa-Zitto, M.A.; Piter, J.C. 2009. Bending strength and stiffness of structural laminated veneer lumber manufactured from fast-growing Argentinean Eucalyptus grandis. Maderas-Cienc Tecnol 11(3):183-190.
Sillanpää, M.; Ncibi, C. 2017a. Implementing the Bioeconomy on the Ground: An International Overview, in: Sillanpää, M.; Ncibi, C. (Eds.), A Sustainable Bioeconomy: The Green Industrial Revolution. Springer International Publishing: Cham, pp. 271-315.
Sillanpää, M.; Ncibi, C. 2017b. Bioeconomy: Multidimensional Impacts and Challenges, in: Sillanpää, M.; Ncibi, C. (Eds.), A Sustainable Bioeconomy: The Green Industrial Revolution. Springer International Publishing: Cham , pp. 317-343.
Spelter, H.; Wang, R.; Ince, P. 1996. Economic Feasibility of Products from Inland West Small-Diameter Timber. No. General GTR-92.USDA-FPL.
Taylor, S.; Wilson, P. 2010. The use of cross-laminated timber in high-density affordable housing and the potential to manufacture this engineered timber product in the Dumfries & Galloway region. CIC-Start Feasibilty Study: United Kingdom.pp.1-43.
Toppinen, A.; Röhr, A.; Pätäri, S.; Lähtinen, K.; Toivonen, R. 2017.The future of wooden multistory construction in the forest bioeconomy - A Delphi study from Finland and Sweden. J For Econ 31:3-10.
URUFOR. 2016. Resumen público del Plan de Manejo de Compañía Forestal Uruguaya SA. < www.urufor.com.uy > (Consulted 01/10/2017).
Uruguay XXI. 2017. Oportunidades de Inversión - Sector Forestal. Uruguay XXI Promoción de Inversión y Exportaciones: Uruguay. p.31.
UTE. 2011. Pliego de bases y condiciones para la convocatoria a interesados en la celebración de contratos de compraventa de energía eléctrica generada a partir de la biomasa (ordenanza código K42433). < www.portal.ute.com.uy > (Consulted 01/10/2017).
Wegner, T.; Skog, K.; Ince, P.; Michler, C. 2009.Uses and desirable properties of wood in the 21st century. J For165-173.