Resistance improvement of rubberwood treated with zinc oxide nanoparticles and phenolic resin against white-rot fungi, Pycnoporus sanguineus

Authors

  • Mohd Khairun Anwar Uyup
  • Tumirah Khadiran
  • Hamdan Husain
  • Sabiha Salim
  • Nordahlia Abdullah Siam
  • Lee Seng Hua

Keywords:

Fungal resistance, Hevea brasilensis, impregnation modification, phenol formaldehyde resin, thermal stability

Abstract

Phenolic resin or phenol formaldehyde (PF) resin containing different percentage of zinc oxide (ZnO) nanoparticles was prepared and used to treat rubberwood. Three types of treatment solutions were prepared, namely (1) low molecular weight phenol formaldehyde resin (LMwPF), (2) 1.5 wt % nano ZnO dissolved in water (ZnO/H2O), and (3) combination of both LMwPF and 1.5 wt % nano ZnO (LMwPF/ZnO). The rubberwood samples were submerged into the treatment solutions for 60, 90, and 120 min, before vacuum impregnation. The untreated rubberwood samples served as the controlled samples. The thermal stability behaviour and resistance against white-rot fungi (Pycnoporus sanguineus) of the treated rubberwood samples were evaluated. The results reveal that the treated rubberwood had slightly better thermal stability compared to the untreated samples. In terms of decay resistance, the rubberwood treated with LMwPF and LMwPF/ZnO possess very high resistance against white-rot fungi. On the other hand, the rubberwood treated with ZnO/H2O did not attain similar effectiveness as the other two treatments, except for the samples that were submerged in ZnO/H2O for 120 min. The results indicate that 1.5 wt % nano ZnO could be sufficient in imparting superior durability to rubberwood provided that longer submersion time is adopted.

Downloads

Download data is not yet available.

References

AKHTARI, M.; NICHOLAS, D. 2013. Evaluation of particulate zinc and copper as wood preservatives for termite control. European Journal of Wood and Wood Products 71: 395–396.

BAHMANI, M.; SCHMIDT, O. 2018. Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas-Cienc Tecnol 20(3): 325-332.

BRELID, P.L.; SIMONSON, R.; BERGMAN, O.; NILSSON, T. 2000. Resistance of acetylated wood to biological degradation. Holz als Roh- und Werkstoff 58: 331-337.

BROWNE, F. G. 1961. The biology of Malayan Scolytidae and Platypodidae. Malayan Forest Record No. 22. Forest Department, Kuala Lumpur.

CLAUSEN, C.A.; FREDERICK, G.; NAMI KARTAL, S. 2010. Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Research Letters 5: 1464-1467.

DAO, D.V.; BREMT, M.; KOELLER, Z.; LE, T.K. 2016. Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens. Powder Technology 288: 366-370.

DHOKE, S.K.; KHANNA, A.S.; SINHA, T.J.M. 2009. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Progress in Organic Coatings 64: 371-382.

DONG, J.; CHEN, L.; LIANG, B.; KONG, J.; ZHAO, H.; LIANG, F. 2009. Research and application progress of water-soluble PF. China Adhesives 18(10): 37-41.

DUNGANI, D.; ISLAM, M.N.; ABDUL KHALIL, H.P.S.; DAVOUDPOUR, Y.; RUMIDATUL, A. 2014. Modification of the Inner Part of the oil palm trunk (opt) with oil palm shell (ops) nanoparticles and phenol formaldehyde (PF) resin: physical, mechanical, and thermal properties. BioResources 9: 455-471.

FANGLI, Y.; PENG, H.; CHUNLEI, Y.; SHULAN, H.; JINLIN, L. 2003. Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. Journal of Materials Chemistry 13: 634-637.

FURUNO, T.; IMAMURA, Y.; KAJITA, H. 2004. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Science and Technology 37 (5): 349-361.

GAO, W.; GUO, C.; YI, T.; ZHAO, S.; DU, G. 2018. Dynamic mechanical thermal analysis (DMTA) of aqueous phenol formaldehyde (PF) resin modified by nano copper oxide (CuO). European Journal of Wood and Wood Products 76: 1145–1151.

GALLIO, E.; ZANATTA, P.; RIBER, D.D.; LAZAROTTO M.; GATTO D.A.; BELTRAME, R. 2018. Fourier Transform Infrared Spectroscopy in treated woods deteriorated by a white rot fungus. Maderas-Cienc Tecnol 20(3): 479-488.

GHORBANI KOOKANDEH, M.; TAGHIYARI, H.R.; SIAHPOSH, H. 2014. Effects of heat treatment and impregnation with zinc-oxide nanoparticles on physical, mechanical, and biological properties of beech wood. Wood Science and Technology 48: 727–736.

GUSSE, A.C.; MILLER, P.D.; VOLK, T.J. 2006. White-rot fungi demonstrate first biodegradation of phenolic resin. Environmental Science and Technology 40(13): 4196-4199.

HONG, L. T.; TAM, M. K.; DALJEET SINGH K.; OMAR, A. 1980. The Effectiveness of Preservatives in the Control of Sap-stain in Rubberwood (Hevea brasiliensis) Logs. Malaysian Forester 43: 522-527.

HUANG, Y.; FEI, B.; ZHAO, R. 2014. Investigation of low-molecular weight phenol formaldehyde distribution in Tracheid cell walls of Chinese Fir wood. Bioresources 9(3): 4150-4158.

IŽDINSKÝ, J.; REINPRECHT, L.; NOSÁL, E. 2018. Antibacterial efficiency of silver and zinc-oxide nanoparticles in acrylate coating for surface treatment of wooden composites. Wood Research 63: 365-372.

JEON, S.K.; KIM, E.J.; LEE, J.; LEE, S. 2016. Potential risks of TiO2 and ZnO nanoparticles released from sunscreen into outdoor swimming pools. Journal of Hazardous Materials 317: 312-318.

JAIN, D.; DAIMA, H.K.; KACHHWAHA, S.; KOTHARI, S.L. 2009. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures 4: 557-563.

LEE, S.H.; ZAIDON, A.; LUM, W.C.; HALIP, J.A.; ANG, A.F.; TAN, L.P.; CHIN, K.L.; TAHIR, P.M. 2018. Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials 181: 408-419.

LEEMON, N.F.; ASHAARI, Z.; UYUP, M.K.A.; BAKAR, E.S.; TAHIR, P.M.; SALIMAN, M.A.R.; GHANI, M.A.; LEE, S.H. 2015. Characterisation of phenolic resin and nanoclay admixture and its effect on impreg wood. Wood Science and Technology 49: 1209–1224.

LI, Y.; ZHANG, Y.; DONG, W.; YUE, J.; XU, M.; SHI, S.Q. 2018. Preparation and properties of pulp fibers treated with zinc oxide nanoparticles by in situ chemosynthesis. Holzforschung. Ahead of print. DOI: https://doi.org/10.1515/hf-2018-0013.

LYKIDIS, C.; BAK, M.; MANTANIS, G.; NEMETH, R. 2016. Biological resistance of pine wood treated with nano-sized zinc oxide and zinc borate against brown-rot fungi. European Journal of Wood and Wood Products 74: 909–911.

MANTANIS, G.; TERZI, E.; KARTAL, S.N.; PAPADOLOULOS, A.N. 2014. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. International Biodeterioration & Biodegradation 90: 140-144.

MARZBANI, P.; MOHAMMADNIA AFROUZI, Y.; OMIDVAR A. 2015. The effect of nano-zinc oxide on particleboard decay resistance. Maderas-Cienc Tecnol 17(1): 63-68.

NABIL, F.L.; ZAIDON, A.; ANWAR, U.M.K.; BAKAR, E.S.; LEE, S.H.; PARIDAH, M.T. 2016. Impregnation of sesenduk (Endospermum diadenum) wood with phenol formaldehyde and nanoclay admixture: effect on fungal decay and termites attack. Sains Malaysiana 45(2): 255-262.

NORHARA, H. 1981. A Preliminary Assessment of the Relative Susceptibility of Rubberwood to Beetle Infestations. Malaysian Forester 44: 482-487.

RATNASINGAM, J.; IORAS, F.; WENMING, L. 2011. Sustainability of the rubberwood sector in Malaysia. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2): 305-311.

SAWAI, J. 2003. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of Microbiological Methods 54: 177-182.

SAWAI, J.; YOSHIKAWA, T. 2004. Quantitative evaluation of antifungal activities of metallic oxide powders (MgO, CaO and ZnO) by conductimetric assay. Journal of Applied Microbiology 96: 803-809.

WANG, X.; LU, J.; XU, M.; XING, B. 2008. Sorption of pyrene by regular and nanoscaled metal oxide particles: influence of adsorbed organic matter. Environmental Science and Technology 42: 7267-7272.

YANG, I.; KUO, M.; MYERS, D.J. 2006. Soy protein combined with copper and boron compounds for providing effective wood preservation. Journal of the American Oil Chemists' Society 83: 239.

ZANATTA, P.; LZAROTTO, M.; GONZALEZ DE CADEMARTORI P.H.; DA SILVA CAVA1, S.; MOREIRA M. L.; GATTO, D.A. 2017. The effect of titanium dioxide nanoparticles obtained by microwave-assisted hydrothermal method on the color and decay resistance of pinewood. Maderas-Cienc Tecnol 19(4): 495-506.

ZUZANNA, A.L.; WILLIAM, W.Y.; BRITTANY, L.O.; ELIZABETH, Q.C.; VICKI, L.C. 2013. Photochemical behaviour of nanoscale TiO2 and ZnO SUNSCREEN ingredients. Journal of Photochemistry and Photobiology A: Chemistry 263: 24-33.

Downloads

Published

2019-10-01

How to Cite

Khairun Anwar Uyup, M., Khadiran, T., Husain, H., Salim, S., Abdullah Siam, N., & Seng Hua, L. (2019). Resistance improvement of rubberwood treated with zinc oxide nanoparticles and phenolic resin against white-rot fungi, Pycnoporus sanguineus. Maderas. Ciencia Y Tecnología, 21(4), 457–466. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3638

Issue

Section

Article

Most read articles by the same author(s)