Physicochemical properties of Pinus massoniana wood subjected to silicone oil heat treatment

Authors

  • Kufre Edet OKON
  • Ubong Ime UDOAKPAN

Keywords:

Chemical properties, contact angle, lignin, polysaccharides, thermal modification, wettability

Abstract

In this Study, Pinus massoniana wood was heat treated with silicone oil to modify the chemical composition relative to the unmodified wood. Specifically, polysaccharide, lignin, extractives and ash contents were the properties investigated. The wood samples were first of all pre-heated in a micro-wave oven for 5 minutes to ease heat transfer within the wood. Silicone oil heat treatment was carried out at 150, 180 and 210oC for 2, 4, 8 h. The silicone oil heat treated wood was characterized by Fourier transformed infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and contact angle.  Results showed that silicone oil heat treatment caused significant decrease in the polysaccharide (P ˂ 0.0001) and ash contents (P ˂ 0.0001) and significant increase in the lignin (P ˂ 0.0001) and extractives contents (P ˂ 0.0001) as the treatment time increased. FTIR results showed that the chemical constituents of the wood were affected by the treatment, while TGA showed that the treated wood resulted in higher thermal stability with increase in the crystallinity index. Silicone oil heat treatment proved to be effective in increasing the contact angle of the wood.

Downloads

Download data is not yet available.

References

ACQUAH, G.E.; VIA, B.K.; FASINA, O.O.; ADHIKARI, S.; BILLOR, N.; ECKHARDT, L. G. 2017. Chemometric modeling of thermogravimetric data for the compositional analysis of forest biomass. PloS one 12(3):e0172999.

ADEBAWO, F.; NAITHANI, V.; SADEGHIFA, H.; TILOTTA, D.; LUCIA, L.; JAMEEL, H.; OGUNSANWO, O. 2016. Morphological and interfacial properties of chemically-modified tropical hardwood. RSC Advances 6(8): 6571-6576.

AKGÜL, M.; GÜMÜŞKAYA, E.; KORKU, S. 2007. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Science and Technology 41(3): 281.

ALEN, R.; KOTILAINEN, R. 2000. Thermal behavior of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200-230oC. Wood and Fiber Science 32(2):138-143.

ALMA, M.; HAFIZO, LU. H.; MALDAS, D. 1996. Dimensional stability of several wood species treated with vinyl monomers and polyethylene glycol-1000. International Journal of Polymeric Materials 32(1-4):93-99.

ASTM D-1107-96 2007. Standard Test Methods for Ethanol- Toluene Solubility of Wood. American Society for Testing and Materials.

ASTM D- 1102-96 2007. Standard Test Method for ash content in wood. American Society for Testing and Materials.

BAHADUR, P.; SASTRY, N. 2005. Principles of polymer science. Alpha Science Int'l Ltd.

BAZYAR, B. 2012. Decay resistance and physical properties of heat treated Aspen wood. BioResources 7(1):696-705.

BEHR, G.; BOLLMUS, S.; GELLERICH, A.; MILITZ, H. 2017. Improvement of mechanical properties of thermally modified hardwood through melamine treatment. Wood Material Science & Engineering 1-9.

BHUIYAN, T. R.; HIRAI, N. 2005. Study of crystalline behavior of heat-treated wood cellulose during treatments in water. Journal of Wood Science 51(1): 42-47.

BOURGOIS, J.; BARTHOLIN, M.C.; GUYONNET, R. 1989. Thermal treatment of wood: analysis of the obtained product. Wood Science and Technology 23(4):303-310.

BRITO, J., SILVA, F.; LEÃO, M.; ALMEIDA, G. 2008. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology 99(18): 8545-8548.

CADEMARTORI, P. H. G.; DOS SANTOS, P. S.; SERRANO, L.; LABIDI, J.; GATTO, D. A. (2013). Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Industrial Crops and Products (45): 360-366.

CHEN, X.; DORVEL, B.; BOOPALACHANDRAN, P.; KING, S. 2018. Dimensional stability and hardness improvement of southern yellow pine wood using divinylbenzene dioxide. European Journal of Wood and Wood Products 76(2):455-468.

COTANA, F.; CAVALAGLIO, G.; NICOLINI, A.; GELOSIA, M.; COCCIA, V.; PETROZZI, A.; BRINCHI, L. 2014. Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass. Energy Procedia 45: 52-60.

DA SILVA, M. R.; BRITO, J. O.; GOVONE, J. S.; DE OLIVEIRA MACHADO, G.; JUNIOR, C. C.; CHRISTOFORO, A. L.; LAHR, F. A. R. 2015. Chemical and mechanical properties changes in Corymbia citriodora wood submitted to heat treatment. International Journal of Materials Engineering 5(4): 98-104.

DUMANLI, A. G.; WINDLE, A. H. 2012. Carbon fibres from cellulosic precursors: a review. Journal of Materials Science 47(10):4236-4250.

ENGELUND, E. T.; THYGESEN, L. G.; SVENSSON, S.; HILL, C. A. 2013. A critical discussion of the physics of wood–water interactions. Wood Science and Technolog 47(1):141-161.

ESTEVES, B.; GRACA, J.; PEREIRA, H. 2008. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62(3): 344-351.

ESTEVES, B.; PEREIRA, H. 2008. Wood modification by heat treatment: A review. BioResources 4(1):370-404.

ESTEVES, B.; VIDEIRA, R.; PEREIRA, H. 2011. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Science and Technology 45(4): 661-676.

ESTEVES, B.; MARQUES, A. V.; DOMINGOS, I.; PEREIRA, H. 2008. Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology 42(5):369-384.

ETIEGNI, L.; CAMPBELL, A. G. 1991. Physical and chemical characteristics of wood ash. Bioresource technology 37(2): 173-178.

FULLER, B. S.; ELLIS, W. D.; ROWELL, R. M. 1997. Hardened and fire retardant wood products. Google Patents.

GÉRARDIN, P.; PETRIČ, M.; PETRISSAN, M.; LAMBERT, J.; EHRHRARDT, J. J. 2007. Evolution of wood surface free energy after heat treatment. Polymer Degradation and Stability 92(4):653-657.

GOLDSTEIN, I. S. 1977. Wood technology: Chemical aspects. ACS Publications.

GONZÁLEZ-PEÑA, M. M.; CURLING, S. F.; HALE, M. D. 2009. On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer degradation and stability 94(12):2184-2193.

GUNSTONE, F. D. 2002. Vegetable Oils in Food Technology: Composition, Properties and Uses. John Wiley & Sons., Boca Raton.

HERRERA, R.; ERDOCIA, X.; LLANO-PONTE, R.; LABIDI, J. 2014. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. Journal of analytical and Applied Pyrolysis (107):256-266.

HILL, C. A. 2007. Wood modification: chemical, thermal and other processes. John Wiley & Sons.

HOSOYA, T.; KAWAMOTO, H.; SAKA, S. 2007. Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis 80(1):118-125.

INARI, G. N.; PETRISSANS, M.; LAMBERT, J.; EHRHARDT, J.; GÉRARDIN, P. 2006. XPS characterization of wood chemical composition after heat-treatment. Surface and Interface Analysis 38(10):1336-1342.

KIM, J. Y.; HWANG, H.; OH, S.; KIM, Y. S.; KIM, U.; CHOI, J. W. 2014. Investigation of structural modification and thermal characteristics of lignin after heat treatment. International Journal of Biological Macromolecules 66:57-65.

KOCAEFE, D.; PONCSAK, S.; BOLUK, Y. 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources 3(2):517-537.

KONG, L.; TU, K.; GUAN, H.; WANG, X. 2017. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency. Applied Surface Science 407: 479-484.

KOROŠEC, R. C.; LAVRIČ, B.; REP, G.; POHLEVEN, F.; BUKOVEC, P. 2009. Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood. Journal of Thermal Analysis and Calorimetry 98(1):189.

KOTILAINEN, R. A.; TOIVANEN, T. J.; ALÉN, R. J. 2000. FTIR monitoring of chemical changes in softwood during heating. Journal of Wood Chemistry and Technology 20(3):307-320.

KUČEROVÁ, V.; KAČÍKOVÁ, D.; KAČÍK, F. 2011. Alterations of extractives and cellulose macromolecular characteristics after thermal degradation of spruce wood. Acta Facultatis Xylologiae Zvolen 53(2):77-83.

KUČEROVÁ, V.; LAGAŇA, R.; VÝBOHOVÁ, E.; HÝROŠOVÁ, T. 2016. The Effect of Chemical Changes during Heat Treatment on the Color and Mechanical Properties of Fir Wood. BioResources 11(4):9079-9094.

KUČEROVÁ, V.; VÝBOHOVÁ, E. 2014. Changes of cellulose in hydrolysis of willow (Salix alba L.) wood. Chemicke Listy 108(11):1084-1089.

LENGOWSKI, E. C.; MUÑIZ, G. I. B. D.; KLOCK, U.; NISGOSKI, S. 2018. Potential use of NIR and visible spectroscopy to analyze chemical properties of thermally treated wood. Maderas-Cienc Tecnol 20(4):627-640.

MILITZ, H. 2002. Heat treatment technologies in Europe: Scientific background and technological state-of-art. ed. Proceedings of Conference on" Enhancing the durability of lumber and engineered wood products" February, 11-13.

MILITZ, H.; ALTGEN, M. 2014. Processes and properties of thermally modified wood manufactured in Europe. Deterioration and protection of sustainable biomaterials. ACS Publication 269-285.

MISSIO, A. L.; MATTOS, B. D.; DE CADEMARTORI, P. H.; GATTO, D. A. 2016. Effects of two-step freezing-heat treatments on japanese raisintree (hovenia dulcis thunb.) wood properties. Journal of Wood Chemistry and Technology 36(1):16-26.

MISSIO, A. L.; MATTOS, B. D.; DE CADEMARTORI, P. H.; PERTUZZATTI, A.; CONTE, B.; GATTO, D. A. 2015. Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze–heat treatments. Thermochimica Acta 615:15-22.

MITCHELL, R.; SEBORG, R.; MILLETT, M. 1953. Effect of heat on the properties and chemical composition of Douglas-fir wood and its major components. Journal of the Forest Products Research Society 3(4):38-42.

NAIK, T. R.; KRAUS, R. N.; KUMAR, R. 2001. Wood Ash: A New Source of Pozzolanic Material: Report N. REP-435. UMW Center for By-Products Utilization.

O'CONNOR, R. T.; DUPRÉ, E. F.; MITCHAM, D. 1958. Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons Part I: physical and crystalline modifications and oxidation. Textile Research Journal 28(5):382-392.

OKON, K. E.; LIN, F.; CHEN, Y.; HUANG, B. 2017b. Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of Chinese parasol wood. Carbohydrate Polymers 164:179-185.

OKON, K. E.; LIN, F.; CHEN, Y.; HUANG, B. 2018a. Decay resistance and dimensional stability improvement of wood by low melting point alloy heat treatment. Journal of Forestry Research 29(6):1795-1805.

OKON, K.E.; LIN, F.; LIN, X.; CHEN, C.; CHEN, Y.; HUANG, B. 2018. Modification of Chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment. European Journal of Wood and Wood Products 221-228.

PANDEY, K. 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science 71(12):1969-1975.

PAUL, A.; JOSEPH, K.; THOMAS, S. 1997. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composites Science and Technology 57(1):67-79.

RAUTKARI, L,; HILL, C. A.; CURLING, S.; JALALUDIN, Z.; ORMONDROYD, G. 2013. What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? Journal of Materials Science 48(18):6352-6356.

ROWELL, R. M.; IBACH, R. E.; MCSWEENY, J.; NILSSON, T. 2009. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood material science and engineering, 4(1-2): 14-22.

ROWELL, R. 2012. Chemical modification of wood to produce stable and durable composites. Cellulose Chemistry and Technology 46(7-8):443-448.

SAILER, M. AND RAPP, A. O. 2001. Use of vegetable oils for wood protection,’’COST action E22 Environmental optimisation of wood protection. Conference in Einbek, Germany, 8-10 November 2001.

SANDERMANN, W.; AUGUSTIN, H. 1964. Chemical investigations on the thermal decomposition of wood. Part III: Chemical investigation on the course of decomposition. Holz als roh-und Werkstoff 22(10): 377-378.

SEBORG, R.; TARKOW, H.; STAMM, A. 1953. Effect of heat upon the dimensional stabilisation of wood. Journal Forest Products Research Society 3(9).

SEGAL, L.; CREELY, J.; MARTIN, JR. A.; CONRAD, C. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10):786-794.

SELAMOGLU, N.; MUCHA, J. A.; IBBOTSON, D. E.; FLAMM, D. L. 1989. Silicon oxide deposition from tetraethoxysilane in a radio frequency downstream reactor: Mechanisms and step coverage. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena 7(6):1345-1351.

SEVERO, E. T. D.; CALONEGO, F.W.; SANSIGOLO, C. 2012. Physical and chemical changes in juvenile and mature woods of Pinus elliottii var. elliottii by thermal modification. European Journal of Wood and Wood Products 70(5):741-747.

SEVERO, E. T. D.; CALONEGO, F. W.; SANSIGOLO, C.; BOND, B. 2016. Changes in the chemical composition and decay resistance of thermally-modified Hevea brasiliensis wood. PloS one, 11(3), e0151353.

SIVONEN, H.; MAUNU, S. L.; SUNDHOLM, F.; JÄMSÄ, S.; VIITANIEMI, P. 2002. Magnetic resonance studies of thermally modified wood. Holzforschung 56(6):648-654.

STAMM, A. J.; TARKOW, H. 1947. Dimensional stabilization of wood. Journal of physical chemistry 51:493-505.

STAMM, A. J. 1964. Wood and cellulose science. Wood and cellulose science.

SUGIYAMA, J.; VUONG, R.; CHANZY, H. 1991. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14): 4168-4175.

SUN, R.; SUN, X. F. 2002. Structural and thermal characterization of acetylated rice, wheat, rye, and barley straws and poplar wood fibre. Industrial Crops and Products 16(3): 225-235.

TEAM, R. C. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013.

TJEERDSMA, B.; BOONSTRA, M.; PIZZI, A.; TEKELY, P.; MILITZ, H. 1998. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. European Journal of Wood and Wood Products 56(3):149-153.

TJEERDSMA, B.; MILITZ, H. 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als roh-und Werkstoff 63(2):102-111.

TONG, L.; ZHANG, W. 2016. Using Fourier transform near-infrared spectroscopy to predict the mechanical properties of thermally modified southern pine wood. Applied spectroscopy, 70(10):1676-1684.

WANG, X.; ZHANG, Y.; YU, Z.; QI, C. 2017. Properties of fast-growing poplar wood simultaneously treated with dye and flame retardant. European Journal of Wood and Wood Products, 1-9.

WEILAND, J.; GUYONNET, R.; GIBERT, R. 1998. Analysis of controlled wood burning by combination of thermogravimetric analysis, differential scanning calorimetry and Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry 51(1):265-274.

WELZBACHER, C. R.; RAPP, A. O. 2004. Determination of the water sorption properties and preliminary results from field tests above ground of thermally modified material from industrial scale processes. IRG/WP, 04-40279.

Wentzel, M. Brischke, C. Militz, H. 2019. Dynamic and static mechanic properties of Eucalyptus nitens thermally modified in an open and closed reactor system. Maderas Ciencia tecnologia 21(2):141-152.

WENTZEL, M.; BRISCHKE, C.; MILITZ, H. 2019. Dynamic and static mechanical properties of Eucalyptus nitens thermally modified in an open and closed reactor system. Maderas. Ciencia y tecnología, http://dx.doi.org/10.4067/S0718-221X2019005000201.

WIKBERG, H.; MAUNU, S. L. 2004. Characterisation of thermally modified hard-and softwoods by 13 C CPMAS NMR. Carbohydrate Polymers 58(4):461-466.

WINDEISEN, E.; STROBEL, C.; WEGENER, G. 2007. Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology 41(6): 523-536.

YANG, H.; YAN, R.; CHEN, H.; LEE, D. H.; ZHENG, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12):1781-1788.

YILDIZ, S.; GEZER, E. D.; YILDIZ, U. C. 2006. Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment 41(12):1762-1766.

YILDIZ, S.; GÜMÜŞKAYA, E. 2007. The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment 42(1):62-67.

Downloads

Published

2019-10-01

How to Cite

Edet OKON, K., & Ime UDOAKPAN, U. (2019). Physicochemical properties of Pinus massoniana wood subjected to silicone oil heat treatment. Maderas. Ciencia Y Tecnología, 21(4), 531–544. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3704

Issue

Section

Article