Effects of wood flour on the mechanical, thermal and morphological properties of poly (l-lactic acid)-chitosan biopolymer composites


  • Ertugrul Altuntas
  • Deniz Aydemir


Bio-based composites, DSC analysis, mechanical properties, Pinus sylvestris, TGA analysis, wood flour


The aim of this paper was to investigate the effects of wood flour on the mechanical, morphological and thermal properties of poly (L-lactic acid) (PLA)-chitosan biopolymer composites produced by compression molding. The composites were characterized by a combination of mechanical properties, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The addition of chitosan to PLA matrix reduced the tensile strength from 57.1 MPa for pure PLA to 34.3 MPa for 5% chitosan and 11.5 MPa for 10% chitosan, and the flexure strength from 72.3 MPa for pure PLLA to 30.4 MPa for 5% chitosan and 24.6 MPa for 10% chitosan. The change trend in the young’s modulus was found to be similar as compare with the tensile strength. However, the flexure modulus generally increased with the addition of the chitosan as comparison with pure PLA. The mechanical properties of the PLA-chitosan blends with wood flour were found to be lower than theirs of the pure PLA. According to SEM images, some holes and small voids at various diameters on the fractured section of the all composites were seen. Tonset, T10%, T50%, T85% of the pure PLA decreased with the addition of both chitosan and wood flour. Thermal stability of the PLA-chitosan blends was determined to be better than the PLA-chitosan composites with wood flour.


Download data is not yet available.


Abdelwahab, M.A.; Flynn, A.; Chiou, B.S.; Imam, S.; Orts, W.; Chiellini, E. 2012. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability 97(9): 1822-1828.

Armentano, I.; Fortunati, E.; Burgos, N.; Dominici, F.; Luzi, F.; Fiori, S.; Jiménez, A.; Yoon, K.; Ahn, J.; Kang, S.; Kenny, J. M. 2015. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym Lett 9: 583–596.

Bonilla, J., Fortunati, E.; Vargas, M.; Chiralt, A.; Kenny, J.M. 2015. Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering 119: 236–243.

Das, B.; Patra, S. 2017. Antimicrobials: Meeting the Challenges of Antibiotic Resistance Through Nanotechnology. In Nanostructures for Antimicrobial Therapy, Chapter 1, Ed. Ficai, A and Grumezesc, A. M., Nanostructures in Therapeutic Medicine Series, pp. 1-22.

Drumright, R. E., Gruber, P.R.; Henton, D.E. 2000. Polylactic acid technology. Advanced Materials 12(23): 1841-1846.

Ebadi-Dehaghani, H.; Khonakdar, H.A.; Barikani, M.; Jafari, S.H.; Wagenknecht, U.; Heinrich, G. 2016. On Localization of Clay Nanoparticles in Polypropylene/poly (lactic acid) Blend Nanocomposites: Correlation with Mechanical Properties. Journal of Macromolecular Science Part B-Physics 55(4): 344-360.

Fukushima, K.; Abbate, C.; Tabuani, D.; Gennari, M.; Camino, G. 2009. Biodegradation of poly(lactic acid) and its composites. Polym Degrad Stab 94: 1625–1630.

Garlotta, D. 2001. A literature review of poly (lactic acid). Journal of Polymers and the Environment 9(2): 63-84.

Kiliç, A.; Sariusta, S.E.; Hafizoğlu, H. 2010. Sarıçam, Karaçam ve Kızılçam basınç odununun kimyasal yapısı. Bartın Orman Fakültesi Dergisi 12(18), 33-39 (In Turkish).

Khor, E.; Lim, L.Y. 2003. Implantable applications of chitin and chitosan. Biomaterials 24(13): 2339-2349.

Maazouz, A.; Lamnawar, K.; Mallet, B. 2011. Compounding and processing of biodegradable materials based on PLA for packaging applications: In greening the 21st century materials world. Front Sci Eng 1: 1–44.

Marudova, M.; Delcheva, E.; Zsivanovits, G. 2015. Mechanical properties of composite films based on chitosan and poly(l-lactic acid). Bulgarian Chemical Communications 47:127–134.

Petersen, K., Nielsen, P.V.; Olsen, M.B. 2001. Physical and mechanical properties of biobased materials - Starch polylactate and polyhydroxybutyrate. Starch-Starke 53(8): 356-361.

Quiroz-Castillo, J. M., Rodríguez-Félix, D.E.; Grijalva-Monteverde, H.; Del Castillo-Castro, T.; Plascencia-Jatomea, M.; Rodríguez-Félix, F.; Herrera-Franco, P.J. 2014. Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. J Carbohydr Polym 101: 1094–1100.

Quiroz-Castillo, J.M.; Rodríguez-Félix, D.E.; Grijalva-Monteverde, H.; Lizárraga-Laborín, L.L.; Castillo-Ortega, M.M.; Del Castillo-Castro, T.; Herrera-Franco, P.J. 2015. Preparation and characterization of films extruded of polyethylene/chitosan modified with poly (lactic acid). Materials 8(1): 137-148.

Rhim, J. W., Hong, S.I.; Ha, C.S. 2009. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. Lwt-Food Science and Technology 42(2): 612-617.

Shah, B.; Selke, S.E.; Walters, M.B.; Heiden, P.A. 2008. Effects of Wood Flour and Chitosan on Mechanical, Chemical, and Thermal Properties of Polylactide. Polymer Composites 29 (6): 655-663.

Sinha, V.R., Singla, A.K., Wadhawan, S.; Kaushik, R.; Kumria, R.; Bansal, K.; Dhawan, S. 2004. Chitosan microspheres as a potential carrier for drugs. International Journal of Pharmaceutics 274(1-2): 1-33.

Suyatma, N.E.; Copinet, A.; Tighzert, L.; Coma, V. 2003. Mechanical and Barrier Properties of Biodegradable Films Made from Chitosan and Poly (lactic acid) Blends. J Polym Environ 12 (1): 1-6.

Tomihata, K.; Ikada, Y. 1997. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7): 567-575.

Wu, D.; Wu, L.; Zhang, M. 2006. Rheology and thermal stability of polylactide/clay nanocomposites. Polym Degrad Stab 91: 3149–3155.

Wu, T.M.; Wu, C.Y. 2006. Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization. Polym Degrad Stab 91: 2198–2204.

Ying, L.; Kun-Yu, Z.; Zhong-Min, D.; Li-Song, D.; Yue-Sheng, L. 2007. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 40: 6257–6267.

Zakaria, Z.; Islam, M.S.; Hassan, A.; Mohamad Haafiz, M.K.; Arjmandi, R.; Inuwa, I.M.; Hasan, M. 2013. Mechanical properties and morphological characterization of PLA/chitosan/epoxidized natural rubber composites. Advances in Materials Science and Engineering, Article ID 629092, (2013): 1-7.

Zhao, H.; Cui, Z.; Wang, X.; Turng, L.S.; Peng, Z. 2013. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-Valerates (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Compos. Part B 51: 79–91.




How to Cite

Altuntas, E., & Aydemir, D. (2019). Effects of wood flour on the mechanical, thermal and morphological properties of poly (l-lactic acid)-chitosan biopolymer composites. Maderas-Cienc Tecnol, 21(4), 611–618. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/3764