Fractionation of Pinus radiata wood by combination of steam explosion and organosolv delignification
Keywords:
Biomass, enzymatic hydrolysis, lignins, pretreatment, radiata pineAbstract
This work proposes a sequential combination of steam explosion and organosolv delignification for Pinus radiata fractionation. An efficient pretreatment to fully optimize the use of lignocellulosic materials is the key to make a biorefinery profitable, especially for softwoods, known to be more recalcitrant than other lignocellulosic raw materials. Steam explosion has a dual effect on biomass as morphological and chemical
changes are introduced. A delignifying stage has been stated to be necessary in order to ease hydrolytic enzymes accessibility to cellulose while avoiding non-productive bonds with the lignin present. Three steam explosion conditions were tested (170°C, 5 min; 180°C, 10 min; 170°C, 5+5 min) followed by an organosolv delignification stage, carried out at two different conditions (170°C, 60 min; 170°C, 90 min). All treatment
yields, delignification extent, and hydrolysis yields were determined to evaluate each stage. The steam explosion treatment did not produce high delignification extent. Maximum global delignification (50,4%) was achieved when combining the two-cycle steam explosion with the most severe post-treatment condition tested. Enzymatic hydrolysis of the cellulosic residue improved after organosolv delignification; however, hydrolysis
yields did not exceed 35%. The chemical changes undergone by softwood lignins are presumably responsible for the low digestibility.
Downloads
References
Araque, E.; Parra, C.; Freer, J.; Contreras, D.; Rodríguez, J.; Mendonça, R.; Baeza, J. 2008. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology 43 (2): 214-219.
Area, M.C.; Vallejos, M.E. 2012. Biorrefinería a partir de residuos lignocelulósicos. Saarbrucken, Alemania: Editorial Académica Española.
Asada, C.; Sasaki, C.; Hirano, T.; Nakamura, Y. 2015. Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: Comparison of softwood and hardwood. Bioresource Technology 182: 245-250.
Aziz, S.; Goyal, G.C. 1993. Kinetics of delignification from mechanistic and process control point of view in solvent pulping processes. TAPPI Pulping Conference.
Berlin, A.; Balakshin, M.; Gilkes, N.; Kadla, J.; Maximenko, V.; Kubo, S.; Saddler, J. 2006. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology 125 (2): 198-209.
Bozell, J.J.; Black, S.K.; Myers, M.; Cahill, D., Miller, W.P.; Park, S. 2011. Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass and Bioenergy 35 (10): 4197-4208.
Brodeur, G.; Yau, E.: Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. 2011. Chemical and Physicochemical Pretreatment of Lignocellulosic
Biomass: A Review. Enzyme Research 2011. Article ID 787532. 17p.
Chandra, R.P.; Ewanick, S.M.; Chung, P.A.; Au-Yeung, K.; Del Rio, L.; Mabee, W.; Saddler, J. N. 2009. Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnology Letters 31(8): 1217-1222.
Chiaramonti, D.; Prussi, M.; Ferrero, S.; Oriani, L.; Ottonello, P.; Torre, P.; Cherchi, F. 2012. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy 46: 25-35.
Cotana, F.; Cavalaglio, G.; Gelosia, M.; Coccia, V.; Petrozzi, A.; Nicolini, A. 2014. Effect of double-step steam explosion pretreatment in bioethanol production from softwood. Applied Biochemistry and Biotechnology 174 (1): 156-167.
Cui, L.; Liu, Z.; Si, C.; Hui, L.; Kang, N.; Zhao, T. 2012. Influence of steam explosion pretreatment on the composition and structure of wheat straw. BioResources 7 (3): 4202-4213.
Donaldson, L.A.; Wong, K.K.Y.; Mackie, K.L. 1988. Ultrastructure of steam-exploded wood. Wood Science and Technology 22: 103-114.
Emmel, A.; Mathias, A.L.; Wypych, F.; Ramos, L.P. 2003. Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresource Technology 86 (2): 105-115.
Ewanick, S.M.; Bura, R.; Saddler, J.N. 2007. Acid-Catalyzed Steam Pretreatment of Lodgepole Pine and Subsequent Enzymatic Hydrolysis and Fermentation to Ethanol. Biotechnology and Bioengineering 98 (4): 737-746.
Galbe, M.; Zacchi, G. 2012. Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy 46: 70-78.
Imlauer, C.M.; Kruyeniski, J.; Area, M.C.; Felissia, F.E. 2014. Fraccionamiento a la Soda-AQ de aserrín de pino para la biorefinería forestal. The VIII IberoAmerican Congress on Pulp and Paper Research. Medellín, Colombia: 26-28.
Kruyeniski, J.; Felissia, F.E.; Area, M.C. 2015. Enzymatic Hydrolysis of Pine Pretreated with Ethanol and Sodium Hydroxide. 3rd Iberoamerican Congress. 4th Latin American Congress. 2nd International Symposium on Lignocellulosic Materials. Concepción. Chile.159p.
Kruyeniski, J.; Ferreira, P.; Graça V.S.; Carvalho, M.; Felissia, F.; Area, M.C. 2016. Physical and chemical characteristics of pretreated pine sawdust and its enzymatic hydrolysis. The IX IberoAmerican Congress on Pulp and Paper Research. Helsinki, Finland.
Kumar, L.; Arantes, V.; Chandra, R.; Saddler, J. 2012. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresource Technology 103: 201-208.
Kumar, L.; Chandra, R.; Chung, P.A; Saddler, J. 2010. Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresource technology 101(20): 7827-7833.
Kumar, L.; Chandra, R.; Saddler, J. 2011. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering 108: 2300-2311.
Laureano-Perez, L.; Teymouri, F.; Alizadeh, H.; Dale, B.E. 2005. Understanding factors that limit enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology 121-124: 1081-1099.
Li, J.; Henriksson, G.; Gellerstedt, G. 2007. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology 98: 3061-3068.
Maity, S.K. 2015. Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews 43: 1446-1466.
Martín-Sampedro, R.; Eugenio, M.E.; García, J.C.; Lopez, F.; Villar, J.C.; Diaz, M.J. 2012. Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass and Bioenergy 42: 97-106.
McDonough, T. 1992. The chemistry of organosolv delignification. IPST Technical Paper Series 455: 1-17.
Muurinen, E. 2000. Organosolv pulping. A review and distillation study related to peroxyacid pulping. Academic Dissertation. Faculty of Technology, University of Oulu. Finland. (Available online: http://herkules.oulu.fi/isbn9514256611/isbn9514256611.pdf)
Nakagame, S.; Chandra, R.P.; Saddler, J.N. 2010. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and Bioengineering 105 (5): 871-879.
Neves, P.V.; Pitarelo, A.P.; Ramos, L.P. 2016. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies. Bioresource Technology 208: 184-194.
Oliet, M.; García, J.; Rodríguez, F.; Gilarrranz, M.A. 2002. Solvent effects in autocatalyzed alcohol-water pulping: Comparative study between ethanol and methanol as delignifying agents. Chemical Engineering Journal 87:157-162.
Overend, R.P.; Chornet, E. 1987. Fractionation of Lignocellulosics by Steam-Aqueous Pretreatments. Phil Trans R Soc Lond 321: 523-536.
Pan, X.; Arato, C.; Gilkes, N.; Gregg, D.; Mabee, W.; Pye, K.; Xiao, Z.; Zhang, X; Saddler, J. 2005. Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering 90 (4): 473-481.
Pan, X.; Xie, D.; Yu, R.W.; Saddler, J.N. 2008. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering 101 (1): 39-48.
Pan, X.; Zhang, X.; Gregg, D.J.; Saddler, J.N. 2004. Enhanced enzymatic hydrolysis of steam-exploded Douglas fir wood by alkali-oxygen post-treatment. Applied biochemistry and biotechnology 113(116):1103-1114
Panagiotopoulos, I.A.; Chandra, R.P.; Saddler, J.N. 2013. A two-stage pretreatment approach to maximise sugar yield and enhance reactive lignin recovery from poplar wood chips. Bioresource Technology 130: 570-577.
Park, N.; Kim, H.; Koo, B.; Yeo, H.; Choi, I. 2010. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresource technology 101: 7046-7053.
Pielhop, T.; Larrazábal, G.O.; Studer, M.H.; Brethauer, S.; Seidel, C.M.; Rudolf Von Rohr, P. 2015. Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chem. 17: 3521-3532.
Rahikainen, J.L.; Martin-Sampedro, R.; Heikkinen, H.; Rovio, S.; Marjamaa, K.; Tamminen, T.; Rojas, O.J.; Kruus, K. 2013. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology 133: 270-278.
Shevchenko, S.M.; Beatson, R.P.; Saddler, J.N. 1999. The Nature of Lignin from Steam Explosion / Enzymatic Hydrolysis of Softwood. Applied Biochemistry and Biotechnology 77(79): 867-876.
Singh, J.; Suhag, M.; Dhaka, A. 2015. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydrate Polymers 117: 624-631.
Singh, R.; Shukla, A.; Tiwari, S.; Srivastava, M. 2014. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews 32: 713-728.
Söderström, J.; Pilcher, L.; Galbe, M.; Zacchi, G. 2003. Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass and Bioenergy 24: 475-486.
Stoffel, R.B. 2016. Fraccionamiento de aserrín de pino destinado a una Biorrefinería Forestal. Ph.D. Thesis. Universidad Nacional de La Plata, Buenos Aires, Argentina. Available online: http://sedici.unlp.edu.ar/handle/10915/52523
Stoffel, R.B.; Acuña, A.A.; Felissia, F.E.; Gassa, L.M.; Area, M.C. 2016a. Post treatment to enhance enzymatic hydrolysis yield of steam exploded pine sawdust. The IX IberoAmerican Congress on Pulp and Paper Research, CIADICYP, Espoo, Finland, September 26-28, 2016.
Stoffel, R.B.; Felissia, F.E.; Silva Curvelo, A.A.; Gassa, L.M.; Area, M.C. 2014. Optimization of sequential alkaline-acid fractionation of pine sawdust for a biorefinery. Industrial Crops and Products 61: 160-168.
Stoffel, R.; Vinholi Neves, P.; Felissia, F.E.; Pereira Ramos, L.; Gassa, L.M.; Area, M.C. 2017. Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass and Bioenergy 107: 93-101.
Sun, Y.; Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology 83: 1-11.
Trajano, H.L.; Engle, N.L.; Foston, M.; Ragauskas, A.J.; Tschaplinski, T.J.; Wyman, C.E. 2013. The fate of lignin during hydrothermal pretreatment. Biotechnology for biofuels 6 (1): 1-16.
Wang, K.; Chen, J.; Sun, S.; Sun, R. 2015. Chapter 6: Steam Explosion. In PANDEY, A.; NEGI, S.; BINOD, P.; LARROCHE, C. (Eds.). Pretreatment of Biomass. Processes and Technologies: 76-104.
Wu, M.M.; Chang, K.; Gregg, D.J.; Boussaid, A.; Beatson, R.P.; Saddler, J.N. 1999. Optimization of Steam Explosion to Enhance Hemicellulose Recovery and Enzymatic Hydrolysis of Cellulose in Softwoods. Applied Biochemistry and Biotechnology 77-79: 47-54.
Yang, B.; Boussaid, A.; Mansfield, S.D.; Gregg, D.J.; Saddler, J.N. 2002. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnology and Bioengineering 77(6): 678-684.
Zhao, X.; Cheng, K.; Liu, D. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology 82: 815-827.