Anti-fungal and anti-termite activity of extractives compounds from thermally modified ash woods


  • Kévin Candelier
  • Marie-France Thévenon
  • Robert Collet
  • Philippe Gérardin
  • Stéphane Dumarçay


Antifungal activity, extractive compounds, Fraxinus spp, heat treatment, termite resistance


Thermal modification of wood is a promising alternative to chemical and biocidal modification processes, increasing the biological durability and dimensional stability of wood. However, the wood-decay resistance properties of heat-treated wood are still not well known. The main objective of this study was to determine the biological resistance of heat-treated ash wood, and assess the antifungal and anti-termite activity of extractive compounds from heat-treated ash woods, depending on the intensity of the modification process (2 hours at 170, 200, 215, 228 (°C) - steam pressure). Untreated and heat-treated wood samples were extracted with water or acetone. The extracts were then used to determine inhibition effectiveness against white-rot (Trametes versicolor) and brown-rot (Rhodonia placenta) fungi. Whatman papers impregnated with extractives were used to evaluate the inhibition of termite feeding. Lastly, the extractives were analyzed by Gas Chromatography - Mass Spectrometry (GC-MS) and compared for their level of anti‑termite and antifungal activity. The results showed that the degree of antifungal activity of these extracts depended on the solvent used during the extraction process and varied depending on heat treatment intensity. The extracts were more effective against brown-rot than white-rot fungi. However, the anti-termite activity of heat-treated ash wood extracts was not really significant. A GC-MS analysis showed that the main share of the extractives in untreated wood was removed. In addition, new chemical elements were generated by the thermal degradation of wood polymers (lignin and hemicelluloses), including aliphatic acids, monosaccharides and other products resulting from their dehydration reaction. The most abundant element was syringaldehyde, from lignin derived compounds, which might explain the antifungal activities of thermally treated ash wood extracts.


Download data is not yet available.


Altgen, M.; Kyyrö, S.; Paajanen, O.; Rautkari, L. 2019. Resistance of thermally modified and pressurized hot water extracted Scots pine sapwood against decay by the brown-rot fungus Rhodonia placenta. Eur J Wood Wood Prod 78(1): 161–171.

Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E.V. 2008. Strength properties of thermally modified softwoods and its relationto polymeric structural wood constituents. Ann For Sci 64: 679–690.

Bozkurt, A.Y.; Göker, Y.; Erdin, N. 1993. Emprenye teknigi. Istanbul Üniversitesi Orman Fakültesi, Yayin 3779/425, Istanbul, Turkey.

Calonego, F.W.; Severo, E.T.D.; Furtado, E.L. 2010. Decay resistance of thermally-modified Eucalyptus grandis wood at 140 °C, 160 °C, 180 °C, 200 °C and 220 °C. Bioresour Technol 101(23): 9391-9394

Candelier, K.; Thévenon, M.F.; Pétrissans, A.; Dumarcay, S.; Gérardin, P.; Pétrissans, M. 2016. Control of wood thermal treatment and its effects on decay resistance: a review. Ann For Sci 73(3): 571-583.

Candelier, K.; Hannouz, S.; Thévenon, M.F.; Guibal, D.; Gérardin, P.; Pétrissans, M.; Collet, R. 2017. Resistance of thermally modified ash (Fraxinus excelsior L.) wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termites. Eur J Wood Prod 75(2): 249-262.

De Oliveira Araújo, S.; Vital, B.R.; Oliveira, B.; de Cássia Oliveira Carneiro, A.; Lourenço, A.; Pereira, H. 2016. Physical and mechanical properties of heat treated wood from Aspidosperma populifolium, Dipteryx odorata and Mimosa scabrella. Maderas-Cienc Tecnol 18(1): 143-156.

De Souza, R.C.; Fernandes, J.B.; Vieira, P.C.; Da Silva, M.F.D.F.; Godoy, M.F.P.; Pagnocca, F.C.; Bueno, O.C.; Hebling, M.J.A.; Pirani, J.R. 2005. A new imidazole alkaloid and other onstituents from Pilocarpus grandiflorus and their antifungal activity. Z Naturforsch 60(7): 787-791.

Dilik T.; Hiziroglu, S. 2012. Bonding strength of heat treated compressed Eastern red cedar wood. Mater Design 42: 317-320.

Doi, S.; Takahashi, M.; Yoshimura, T.; Kubota, M.; Adachi, A. 1998. Attraction of steamed Japanese larch (Larix leptolepis (Sieb. et Zucc.) Gord.) heartwood to the subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Holzforschung 52(1): 7-12.

CEN. 2006. XP CEN/TS 15083-1: Durability of wood and wood-based products - Determination of the natural durability of solid wood against wood destroying fungi - Test methods - Part 1: basidiomycetes. European Committee for Standardization. Brussels, Belgium.

CEN. 2012. EN 117: Wood preservatives - Determination of toxic values against Reticulitermes species (European termites) (Laboratory method). European Committee for Standardization. Brussels, Belgium.

CEN. 2013. EN 335: Durability of wood and wood-based products - Use classes: definitions, application to solid wood and wood-based products. European Committee for Standardization. Brussels, Belgium.

CEN. 2016. EN 350: Durability of wood and wood-based products - Testing and classification of the durability to biological agents of wood and wood-based materials. European Committee for Standardization. Brussels, Belgium.

Esteves, B.; Graça, J.; Pereira, H. 2008. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62(3): 344-351.

Esteves, B.; Pereira, H.M. 2009. Wood modification by heat treatment: a review. BioResources 4(1): 370–404.

Esteves, B.; Videira, R.; Pereira, H. 2011. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Sci Technol 45(4): 661-676.

Gao, Y.; Wang, H.; Guo, J.; Peng, P.; Zhai, M.; Shed, D. 2016. Hydrothermal degradation of hemicelluloses from triploid poplar in hot compressed water at 180-340 °C. Polym Degrad Stab 126: 179-187.

Gérard, J.; et al. 2017. Tropical timber atlas. Versailles : Ed. Quae, 999 p. (Guide pratique: Quae).

Gérardin, P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood-a review. Ann For Sci 73(3): 559–570.

Guo, H.; Bachtiar, E.; Regal, J.R.; Heeb, M.; Schwarze, F.W.M.R.; Burgert, I. 2018. Non-biocidal preservation of wood against brown-rot fungi with TiO2/Ce Xerogel. Green Chem 20(6): 1375-1382.

Hakkou, M.; Pétrissans, M.; Gérardin, P.; Zoulalian, A. 2006. Investigation of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stabil 91(2): 393-397.

Hannouz, S.; Collet, R.; Buteaud, J.C.; Bléron, L.; Candelier, K. 2015. Mechanical characterization of heat treated ash wood in relation with structural timber standards. Pro Ligno 11(2): 3-10.

Ibrahim, M.N.M.; Sriprasanthi, R.B.; Shamsudeen, S.; Adam, F.; Bhawani, S.A. 2012. A concise review of the natural existence, synthesis, properties, and applications of syringaldehyde. BioResources 7(3): 4377-4399.

Inari, G.; Petrissans, M.; Lambert, J.; Ehrhardt, J.J.; Gerardin, P. 2007. Chemical reactivity of heat-treated wood. Wood Sci Technol 41(2): 157-168.

International Thermowood Association. 2003. ThermoWood handbook. Unioninkatu 14, FIN-00130. Helsinki, Finland.

Kamdem, D.; Pizzi, A.; Triboulot, M.C. 2000. Heat-treated timber: potentially toxic by-products presence and extent of wood cell wall degradation. Holz Roh Werkst 58(4): 253-257.

Kamdem, D.P.; Pizzi, A.; Jermannaud, A. 2002. Durability of heat-treated wood. Holz Roh Werkst 60(1): 1-6.

Kadir, R.; Awang, K.; Khamaruddin, Z.; Soit, Z. 2015. Chemical compositions and termiticidal activities of the heartwood from Calophyllum inophyllum L. Ann Brazil Acad Sci 87(2): 743-751.

Kelly, C.; Jones, O.; Barnhart, C.; Lajoie, C. 2008. Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii; Growth and xylitol biosynthesis. In Biotechnology for Fuels and Chemicals. ABAB Symposium (Part A: Enzyme Engineering and Biotechnology). Adney, W.S.; McMillan J.D.; Mielenz J.; Klasson K.T. (eds). Humana Press: 615-626.

Lekounougou, S.; Pétrissans, M.; Jacquot, J.P.; Gelhaye, E.; Gérardin, P. 2009. Effect of heat treatment on extracellular enzymatic activities involved in beech wood degradation by Trametes versicolor. Wood Sci Technol 43(3-4): 331-341.

Lima, T.A.; Pontual, E.V.; Dornelles, L.P.; Amorima, P.K.; Sá, R.A.; Breitenbach Barroso Coelho, L.C.; Napoleão, T.H.; Guedes Paiva, P.M. 2014. Digestive enzymes from workers and soldiers of termite Nasutitermes corniger. Comp Biochem Phys B 176: 1-8.

Lovaglio, T.; D’Auria, M.; Rita, A.; Todaro, L. 2017. Compositions of compounds extracted from thermo-treated wood using solvents of different polarities. iForest 10(5): 824-828.

Mantanis, G.I. 2017. Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources 12(2): 4478-4489.

Metä-Kortelainen S.; Anitikainen T.; Viitaniemi, P. 2005. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz Roh Werkst 64(3): 192–197.

Momohara, I.; Ohmura, W.;Kato, H.; Kubojima, Y. 2003. Effect of high temperature treatment on wood durability against the Brown-rot fungus, Fomitopsis palustris, and the termite, Coptotermes formosanus. In Proceedings of 8th International IUFRO Wood Drying Conference: 284-287. Brasov, Romania.

Murugesan, K.; Yang, I.H.; Kim, Y.; Jeon, J.; Chang, Y. 2009. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. App Microbiol Biot 82(2): 341-350.

Niemz, P.; Hofmann, T.; Rétfalvi, T. 2010. Investigation of chemical changes in the structure of thermally modified wood. Maderas-Cienc Tecnol 12(2): 69-78.

NIST. 2011. NIST 11 MS Database and MS Search Program v.2.0g. U.S. Department of Commerce, National Institute of Standards and Technology Standard Reference Data Program, Gaithersburg, MD 20899, USA.

Nunes, L.; Nobre, T.; Rapp, A. 2004. Thermally modified wood in choice tests with subterranean termites. COST E37, Reinbeck, IA, USA.

Pal, M.; Verma, R.K.; Tewari, S.K. 2011. Anti-termite activity of essential oil and its components from Myristica fragrans against Microcerotermes beesoni. Journal of Applied Sciences and Environmental Management 15(4): 597-599.

Peters, J.; Pfriem, A.; Horbens, M.; Fischer, S.; Wagenführ, A. 2009. Emissions from thermally modified beech wood, their reduction by solvent extraction and fungicidal effect of the organic solvent extracts. Wood Mater Sci Eng 4(1-2): 61-66.

Poncsak, S.; Kocaefe, D.; Simard, F.; Pichette, A. 2009. Evolution of extractive composition during thermal treatment of jack pine. J Wood Chem Technol 29(3): 251-264.

Purich, D.L. 2010. Factors influencing enzyme activity. In Enzyme kinetics: catalysis and control: a reference of theory and best-practice methods: 379-484. Purich, D.L. (Ed.) Elsevier.

Qin, L.; Li, W.C.; Liu, L.; Zhu, J.Q.; Li, X.; Li, B.Z.; Yuan, Y.J. 2016. Inhibition of lignin‑derived phenolic compounds to cellulose. Biotechnol Biofuels 9: 70-80.

Regnault-Roger, C.; Ribodeau, M.; Hamraoui, A.; Bareau, I.; Blanchard, P.; Gil-Munoz, M.I.; Barberan, F.T. 2003. Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J Stored Prod Res 40(4): 395-408.

Rousset, P.; Perré, P.; Girard, P. 2004. Modification of mass transfer properties in poplar wood (P. robusta) by thermal treatment at high temperature. Holz Roh Werkst 62(2): 113–119.

Rowell, R.M.; Pettersens, R.; Han, J.S.; Rowell, J.S.; Tshabalala, M.A. 2005. Cell wall chemistry. In handbook of wood chemistry and wood composites. Chapter 3: 35-72. Rowell, R. (ed.). CRC Press, Boca Raton, FL, USA.

Salem, N.; Msaada, K.; Elkahoui, S.; Mangano, G.; Azaeiz, S.; Ben Slimen, I.; Kefi, S.; Pintore, G.; Limam, F.; Marzouk, B. 2014. Evaluation of Antibacterial, Antifungal, and Antioxidant Activities of Safflower Natural Dyes during Flowering. BioMed Res Int 762397, 10p.

Salman, S.; Pétrissans, A.; Thévenon, M.F.; Dumarçay, S.; Gérardin, P. 2016. Decay and -termite resistance of pine blocks impregnated with different additives and subjected to heat treatment. Eur J Wood Prod 74(1): 37-42.

Salman, S.; Thévenon, M.F.; Pétrissans, A.; Dumarçay, S.; Candelier K. ; Gérardin, P. 2017. Improvement of the durability of heat-treated wood against termites. Maderas-Cienc Tecnol 19(3): 317-328.

Sandberg, D.; Kutnar, A. 2016. Thermal Modified Timber (TMT): Recent development in Europe and North America. Wood Fiber Sci 48: 28-39.

Sandberg, D.; Kutnar, A.; Mantanis, G. 2017. Wood modification technologies - a review. iForest 10: 895-908.

SAS Institute. 2012. JMP 10.0.2 program. SAS Institute Inc. Cary, NC, USA.

Schultz, T.P.; Nicholas, D.D.; Preston, A.F. 2007. A brief review of the past, present and future of wood preservation. Pest Manag Sci 63(8): 784-8.

Sivrikaya, H.; Can, A.; Teresa de Troya, M.C. 2015. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas-Cienc Tecnol 17(3): 559-570.

Surini, T.; Charrier, F.; Malvestio, J.; Charrier, B.; Moubarik, A.; Castéra, P.; Grelier, S. 2012. Physical properties and termite durability of maritime pine Pinus pinaster Ait., heat-treated under vacuum pressure. Wood Sci Technol 46(1): 487–501.

Susi, P.; Aktuganov, G.; Himanen, J.; Korpela, T. 2011. Biological control of wood decay against fungal infection. J Environ Manage 92(7): 1681-1689.

Tjeerdsma, B.F.; Militz, H. 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat treated wood. Holz Roh Werkst 63(2): 102-111.

Vallet, C.; Alvez, E.; Mila, I.; Pollet, B.; Weiland, J.; Guyonnet, R.; Lapierre, C. 2001. Retification of maritime pine: lignin structure and wood properties [In French]. In Les Cahiers scientifiques du bois. Volume 2. Arbolor. Quatrième journée Forêt-Bois, ENSTIB, Epinal. Association des sciences et technologies du bois, Nancy, France. 176p.

Wang, W.; Cao, J.; Cui, F.; Wang, X.; 2016. effect of ph on chemical components and mechanical properties of thermally modified wood. Wood Fiber Sci 44(1): 46-53.

Wang, Z.; Yang, X.; Sun, B.; Chai, Y.; Liu, J.; Cao, J. 2016. Effect of Vacuum Heat Treatment on the Chemical Composition of Larch Wood. BioResources 11(3): 5743-5750.

Weiland, J.J.; Guyonnet, R. 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst 61(3): 216-220.

Ximenes, E.; Kim, Y.; Mosier, N.; Dien, B.; Ladisch, M. 2011. Deactivation of cellulases by phenols. Enzyme Microb Technol 48(1): 54–60.

Yalcin, M.; Sahin, H.I. 2015. Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood. Maderas-Cienc Tecnol 17(2): 435-446.

Yildiz, S.; Gezer, D.; Yildiz, U. 2006. Mechanical and chemical behavior of spruce wood modified by heat. Build Environ 41(12): 1762-1766.

Yu, Z.; Gwak, K.S.; Treasure, T.; Jameel, H.; Chang, H.; Park, S. 2014. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. ChemSusChem 7(7): 1942–50.




How to Cite

Candelier, K., Thévenon, M.-F., Collet, R., Gérardin, P., & Dumarçay, S. (2020). Anti-fungal and anti-termite activity of extractives compounds from thermally modified ash woods. Maderas. Ciencia Y Tecnología, 22(2), 223–240. Retrieved from




Most read articles by the same author(s)