Variability in the physico-chemical properties of wood from Eucalyptus robusta depending on ecological growing conditions and forestry practices: The case of smallholdings in the Highlands of Madagascar

Authors

  • Zo Elia Mevanarivo
  • Tahiana Ramananantoandro
  • Mario Tomazello Filho
  • Alfredo Napoli
  • Andriambelo Radonirina Razafimahatratra
  • Herintsitohaina Ramarson Razakamanarivo
  • Gilles Chaix

Keywords:

Climate, coppice, Eucalyptus robusta, rotation, soil, wood properties

Abstract

This study set out to determine which environmental factors of growth and silvicultural practices can affect the properties of Eucalyptus robusta coppice wood and also to study variability in those properties depending on the factors. Hundred and thirty-five coppice logs aged 2 to 10 years were collected from five zones in the Highlands of Madagascar. Wood density at 12% moisture content was measured by X-ray microdensitometry. Chemical properties, such as the total extractives, Klason lignin and holocellulose contents were predicted using near infrared spectrometry prediction models. The results significantly showed (p-value<0.001) that wood density (0.543 – 0.836 g.cm-3), total extractives (3.1 – 9.8%) and Klason lignin content (24.6 – 35.3%) increased with age, with the

opposite occurring for holocellulose (63.8 – 69.9%). Wood density also varied significantly (p-value<0.001) depending on the zones, which was not the case for chemical properties. The densest woods were found at the hottest zones with less acid soils. Woods were less dense in zones, characterized by high rainfall and a soil rich in nitrogen and organic carbon. The plantation spacing, elevation of the zone and soil texture did not significantly affect wood properties.

Downloads

Download data is not yet available.

References

BRADSTREET, R.B. 1954. Kjeldahl method for organic nitrogen. Anal Chem 26: 185–187. https://doi.org/10.1021/ac60085a028.

BRAVO, S.D.; ESPINOSA, M.; VALENZUELA, L.; CANCINO, J.; LASSERRE, J.P. 2012. Effect of thinning on growth and some properties of wood of Eucalyptus nitens in a plantation of 15 years old. Maderas-Cienc Tecnol 14(3): 373-388. https://doi.org/10.4067/S0718-221X2012005000009.

CARVALHO, D.E.; MARTINS, A.P.M.; SANTINI, E.J.; SARTURI-DE FREITAS, L.; TALGATTI, M.; SUSIN, F. 2016. Natural durability of Eucalyptus dunnii Maiden, Eucalyptus robusta Sm., Eucalyptus tereticornis Sm. and Hovenia dulcis Thunb. Rev Árvore 40(2): 363–370.
https://doi.org/10.1590/0100-67622016000200019.

CASTRO, A.F.N.M.; CASTRO, R.V.O.; CARNEIRO, A.C.O.; SANTOS, R.C.; CARVALHO, A.M.M.L.; TRUGILHO, P.F.; MELO, I.C.N.A. 2016. Correlations between age, wood quality and charcoal quality of Eucalyptus clones. Rev Árvore 40: 551–560. https://doi.org/10.1590/0100-67622016000300019.

CHAIX, G. 2012, Global NIRS models to predict main chemical compounds of eucalyptus wood. In: 2012 IUFRO Conference. Division 5 Forest products, 8-13 July 2012, Lisbon, Portugal: final program, proceedings and abstracts book. IUFRO, ISA, CEF. Vienne: IUFRO, Résumé, 214.

CIESIELSKI, H.; STERCKEMAN, T.; SANTERNE, M.; WILLERY, J. 1997. Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie 17: 1–7. https://doi.org/10.1051/agro:19970101.

CONYERS, K.M.; DAVEY, G.B. 1988. Observations on some routine methods for soil pH determination. Soil Sci 145: 29-36.

CUTTER, B.E.; COGGESHALL, M.V.; PHELPS, J.E.; STOKKE, D.D. 2007. Impacts of forest management activities on selected hardwood wood quality attributes: a review. Wood Fiber Sci 36: 84–97.

DEBELL, D.S.; KEYES, C.R.; GARTNER, B.L. 2001. Wood density of Eucalyptus saligna grown in Hawaiian plantations: effects of silvicultural practices and relation to growth rate. Aust For 64:106–110. https://doi.org/10.1080/00049158.2001.10676173.

DOWNES, G.M.; WORLEDGE, D.; SCHIMLECK, L.; HARWOOD, C.; FRENCH, J.; BEADLE, C. 2006. The effect of growth rate and irrigation on the basic density and kraft pulp yield of Eucalyptus globulus and E. nitens. N Z J For 51(3): 13-22.

DOWNES, G.M.; HARWOOD, C.; WASHUSEN, R.; EBDON, N.; EVANS, R.; WHITE, D.; DUMBRELL, I. 2014. Wood properties of Eucalyptus globulus at three sites in Western Australia: Effects of fertiliser and plantation.stocking. Aust Forestry 77: 3-4, 179-188. https://doi.org/10.1080/00049158.2014.970742.

DREW, D.M.; BRUCE, J.; DOWNES, G.M. 2017. Future wood properties in Australian forests: effects of temperature, rainfall and elevated CO2. Aust Forestry 80: 242–254. https://doi.org/10.1080/00049158.2017.1362937.

EUFRADE-JUNIOR, H.J.; BALLARIN, A.W.; VILLAMAGUA-VERGARA, G.C.; GUERRA, S.P.S. 2017. Effect of sylvicultural management on wood density from short rotation forest systems. Maderas-Cienc Tecnol 9(3):285-292. https://doi.org/10.4067/S0718-221X2017005000024.

GION, J.-M.; CAROUCHE, A.; DEWEER, S.; BEDON, F.; PICHAVANT, F.; CHARPENTIER, J.-P.; BAILLERES, H.; ROZENBERG, P.; CAROCHA, V.; OGNOUABI, N.; VERHAEGEN, D.; GRIMA-PETTENATI, J.; VIGNERON, P.; PLOMION, C. 2011. Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus. BMC Genomics 12:301. https://doi.org/10.1186/1471-2164-12-301.

GONÇALVES, J.L.M.; STAPE, J.L.; LACLAU, J.-P.; SMETHURST, P.; GAVA, J.L. 2004. Silvicultural effects on the productivity and wood quality of eucalypt plantations. For Ecol Manag 193 : 45–61. https://doi.org/10.1016/j.foreco.2004.01.022.

GOUGH, D.K.; BELL, R.E.; RYAN, P.A.; BRAGG, C.T. 1989. Drying and burning properties of the wood of some Australian tree species. ACIAR Monogr (10): 177–186.

HEIN, P.R.G.; BOUVET, J.-M. ; MANDROU, E. ; VIGNERON, P. ; CLAIR, B. ; CHAIX, G. 2012. Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla ST Blake wood. Ann For Sci 69 (6) : 681–691. https://doi.org/10.1007/s13595-012-0186-3.

HSING, T.Y.; FIGUEIREDO-DE PAULA, N.; CESAR-DE PAULA, R. 2016. Características dendrométricas, químicas e densidade básica da madeira de híbridos de Eucalyptus grandis x Eucalyptus urophylla. Ciênc Florest 26(1): 273-283. https://doi.org/10.5902/1980509821119.

JANKOWSKY, I.P. 1979. Madeira juvenil: formação e aproveitamento industrial. Inst Pesqui E Ciênc Florestais IPEF 81: 1–15.

JIOFACK-TAFOKOU, R.B. 2008. Eucalyptus robusta Sm. [Internet] Record from PROTA4U. Louppe, D., Oteng-Amoako, A.A. & Brink, M. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. <http://www.prota4u.org/search.asp>. Accessed 11.9.17.

KOGA, M.E.T. 1988. Matérias-primas fibrosas. Celulose e papel: tecnologia de fabricação da pasta celulósica. IPT, São Paulo, 2ª ed., p. 15-44.

LIMA, I.L.; LONGUI, E.L.; SANTINI JUNIOR, L.; GARCIA, J.N.; FLORSHEIM, S.M.B.2010. Effect of fertilization on cell size in wood of Eucalyptus grandis Hill ex Maiden. Cerne 16 : 465–472. https://doi.org/10.1590/S0104-77602010000400006.

MAKOUANZI, C.G. ; CHAIX, G.; NOURISSIER, S. ; VIGNERON, P. 2017. Genetic variability of growth and wood chemical properties in a clonal population of
Eucalyptus urophylla x Eucalyptus grandis in the Congo. South For 80(2): 151-158. https://doi.org/10.2989/20702620.2017.1298015.

MALAN, F.S. 1995. Eucalyptus improvement for lumber production. Semin Int Util Madeira Eucalipto Para Serraria 1: 1–19.

MALIK, M.F.E.I.; ABDELGADIR, A.Y. 2015. Effect of Growth Rate on Wood Density of Eucalyptus camaldulensis Wood of Coppice Origin Grown in White Nile State Sudan. Journal of Forest Products & Industries 4(3): 86-93.

MUNERI, A.; DAIDO, T.; HENSON, M.; JOHNSON, I. 2007. Variation in pulpwood quality of superior Eucalyptus dunnii families Grown in NSW. Appita J 60(1):74-77.

NAIDOO, S.; ZBONAK, A.; PAMMENTER, N.W.; AHMED, F. 2007. Assessing the effects of water availability and soil characteristics on selected wood properties of E. grandis in South Africa. In: Eucalypts and Diversity: Balancing Productivity and Sustainability. Proceedings of the IUFRO Working Group 2.08.03 Conference, Durban, South Africa. 22-26 October 2007.

OLSEN, S.R.; COLE, C.V.; WATANABE, F.S.; DEAN, L.1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA Circular 939:1-19. Gov. Printing Office Washington D.C.

PROTASIO, T.P.; NEVES, T.A.; APARICIDA DOS REIS, A.; TRUGILHO, P.F. 2014. Efeito da idade e clone na qualidade da madeira de Eucalyptus spp. visando à produção de bioenergia. Ciênc Florest 24: 465-477. https://doi.org/10.5902/1980509814587.

RAKOTOMALALA, J. 2015. Gestion par les populations locales de la diversité génétique de l’Eucalyptus robusta et dynamiques des reboisements autour d’Antananarivo (Cas des districts d’Anjozorobe et de Manjakandriana). Mémoire de DEA. Université d’Antananarivo, Antananarivo, Madagascar.

RAKOTOVAO, G.; RABEVOHITRA, A.R.; DE CHATELPERRON, P.C.; GUIBAL, D.; GERARD, J. 2012. Atlas des bois de Madagascar. Editions Quae, Versailles, France.

RAMAMONJISOA, B. 1999. Rapport de compilation et d’analyse des données existantes sur le secteur des plantations forestières de Madagascar : Etat des plantations villageoises et familiales malgaches d’aujourd’hui. CE FAO, Rome, Italie.

RANDRIANJAFY, H. 1999. Les plantations d’eucalyptus à Madagascar : Superficie, rôle et importance des massifs. CE FAO, Rome, Italie.

RAWLS, W.J. ; PACHEPSKY, Y.A. ; RITCHIE, J.C.; SOBECKI, T.M. ; BLOODWORTH, H. 2003. Effect of soil organic carbon on soil water retention. Geoderma 116: 61–76. https://doi.org/10.1002/hyp.11070.

RAYMOND, C.A.; MUNERI, A. 2000. Effect of fertilizer on wood properties of Eucalyptus globulus. Can J Forest Res 30: 136–144. https://doi.org/10.1139/x99-186

RAZAFIMAHATRATRA, A.R.; RAMANANANTOANDRO, T.; RAZAFIMAHARO, V.; CHAIX, G. 2016. Provenance and progeny performances and genotype × environment interactions of Eucalyptus robusta grown in Madagascar. Tree Genet Genomes 12:38. https://doi.org/10.1007/s11295-016-0999-6.

RAZAKAMANARIVO, R.H.; RAZAFINDRAKOTO, M.A.; ALBRECHT, A. 2010. Fonction puits de carbone des taillis d’eucalyptus à Madagascar. Bois For Trop 305(3) : 5-19.

RAZAKAMANARIVO, R.H.; RAZAKAVOLOLONA, A.; RAZAFINDRAKOTO, M.-A.; VIEILLEDENT, G.; ALBRECHT, A. 2012. Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar. Biomass Bioenerg 45: 1–10. https://doi.org/10.1016/j.biombioe.2011.01.020.

R CORE TEAM. 2017. R: A Language and Environment for Statistical Computing. https://www.R-project.org/

RODERICK, M.L.; BERRY, S.L. 2001. Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytol 149: 473–485. https://doi.org/10.1046/j.1469-8137.2001.00054.x.

RZASA, S.; OWCZARZAK, W. 2013. Methods for the granulometric analysis of soil for science and practice. Polish J Soil Sci 46(1):1-50.,

SANTANA, W.M.S.; CALEGARIO, N.; ARANTES, M.D.C.; TRUGILHO, P.F. 2012. Effect of age and diameter class on the properties of wood from clonal Eucalyptus. Cerne 18: 1–8. http://dx.doi.org/10.1590/S0104-77602012000100001.

SEARSON, M.J.; THOMAS, D.S.; MONTAGU, K.D.; CONROY, J.P. 2004. Wood density and anatomy of water-limited eucalypts. Tree Physiol 24: 1295–1302. https://doi.org/10.1093/treephys/24.11.1295.

SETTE JR, C.R.; ROSADA-DE OLIVEIRA, I.; TOMAZELLO-FILHO, M.; YAMAJI, F.M.; LACLAU, J.P. 2012. Efeito da idade e posição de amostragem na densidade e características anatômicas da madeira de Eucalyptus grandis. Rev Árvore 36: 1183-1190. https://doi.org/10.1590/S0100-67622012000600019.

SEVERO, E. T. D.; CALONEGO, F. W.; SANSÍGOLO, C. A. 2006. Composição química da madeira de Eucalyptus citriodora em função das direções estruturais. Silva Lusitana 14(1): 113-126.

THOMAS, D.S.; MONTAGU, K.D.; CONROY, J.P. 2007. Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedlings. Tree Physiol 27: 251–260. https://doi.org/10.1093/treephys/27.2.251.

TRUGILHO, P.F.; LIMA, J.T.; MENDES, L.M. 1996. Influência da idade nas características físico-químicas e anatômicas da madeira de Eucalyptus saligna. Cerne 2: 94–111.

VERHAEGEN, D. ; RANDRIANJAFY, H. ; MONTAGNE, P. ; DANTHU, P. ; RABEVOHITRA, R. ; TASSIN, J. ; BOUVET, J.M. 2011. Historique de l’introduction du genre Eucalyptus à Madagascar. Bois For Trop 309(3): 17-25

WALKLEY, A.; BLACK, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37: 29-38.

WEHR, T.R. 1991.Variação nas características da madeira de Eucalyptus grandis Hill ex Maiden e suas influências na qualidade de cavacos em cozimentos Kraft. Tese M.S. ESALQ/Universidade de Sao Paulo, Piracicaba, Brésil.

ZBONAK, A.; BUSH, T.; GRZESKOWIAK, V. 2007. Comparison of tree growth, wood density and anatomical properties between coppiced trees and parent crop of six Eucalyptus genotypes. IUFRO 2.08.03 “Eucalypts and diversity: balancing productivity and sustainability’. Durban South Africa Oct 22-26, 2007.

ZHAO, X.; YI, Q.; DING, N.; XIA, J.S. 2014. Changes in soil properties and quality for a Eucalyptus introduction area: a case study in Lancang County, Yunnan Province. J Residuals Sci Technol 11:107–117.

ZOBEL, B.J.; BUIJTENEN, J.P. VAN 2012. Wood Variation: Its Causes and Control. Springer Verlag, Berlin, Germany.

Downloads

Published

2020-10-01

How to Cite

Mevanarivo, Z. E., Ramananantoandro, T., Tomazello Filho, M., Napoli, A., Razafimahatratra, A. R., Razakamanarivo, H. R., & Chaix, G. (2020). Variability in the physico-chemical properties of wood from Eucalyptus robusta depending on ecological growing conditions and forestry practices: The case of smallholdings in the Highlands of Madagascar. Maderas. Ciencia Y Tecnología, 22(4), 425–438. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4136

Issue

Section

Article