The efficiency of Pistacia atlantica gum for increasing resistance of rapeseed oil-heat treated wood to fungal attacks
Keywords:
Fungal resistance, oil-heat treated wood, Penicillium expansum, Pistacia atlantica, Populus deltoids, Trametes versicolorAbstract
In this research, we used Pistacia atlantica gum during cooling phase of oil-heat treatment of poplar wood (Populus deltoids) to improve its resistance to the white-rot fungus Trametes versicolor and growth of the mold fungus Penicillium expansum. Thermal modification was carried out using rapeseed oil at 180 °C, 200 °C and 220 °C for 2 hours and 4 hours. The modified wood specimens were then directly cooled in the oil containing 0 %, 5 % and 10 % (w/w) of the gum at 25 °C for 30 minutes. The chemical constituents of the essential oil extracted with a Clevenger type apparatus were determined by chromatography–mass spectrometry (GC-MS). The amounts of α-pinene, β-pinene and α-terpinolene of the essential oil were 60,2 %, 8,7 % and 3,9 %, respectively. The mold resistance was greatly improved, while the improvement against the decay fungus was only observed for the specimens modified at 180 °C. Our results confirmed that the enhanced fungal resistance was not only due to the presence of monoterpenes in the essential oil, but also to a further reduction in the hygroscopicity of the treated wood.
Downloads
References
Ahmed, S.A.; Morén, T.; Sehlstedt-Persson, M.; Blom, A. 2017. Effect of oil impregnation on water repellency, dimensional stability and mold susceptibility of thermally modified European aspen and downy birch wood. J Wood Sci 63(1): 74–82 https://doi.org/10.1007/s10086-016-1595-y
Alma, M.H.; Nitz, S.; Kollmannsberger, H.; Digrak, M.; Efe, F.T.; Yilmaz, N. 2004. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J Agric Food Chem 52(12): 3911-3914. https://doi.org/10.1021/jf040014e
American Society for Testing and Materials. ASTM. 1996. D4445-91e1: Standard test method for fungicides for controlling sapstain and mold on unseasoned lumber (laboratory method). ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D4445-91R96E01
Bahmani, M.; Schmidt, O. 2018. Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas-Cienc Tecnol 20(3): 325-332. http://dx.doi.org/10.4067/S0718-221X2018005003301
Barrero, A.F.; Herrador, M.M.; Arteaga, J.F.; Akssira, M.; Mellouki, F.; Belgarrabe, A. 2005. Chemical Composition of the Essential Oils of Pistacia atlantica Desf. J Essent Oil Res 17(1): 52-54. https://doi.org/10.1080/10412905.2005.9698828
Benhammou, N.; Bekkara, F.A.; Panovska, T.K. 2008. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr J Pharm Pharmacol 2(2): 22-28. https://academicjournals.org/journal/AJPP/article-full-text-pdf/86CD3DD32024
Boonstra, M.J.; van Acker, J.; Kegel, E.; Stevens, M. 2007. Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41(1): 31–57 https://doi.org/10.1007/s00226-006-0087-4
Calonego, F.W.; Severo, E.T.D.; Furtado, E.L. 2010. Decay resistance of thermally-modified Eucalyptus grandis wood at 140 °C, 160 °C, 180 °C, 200 °C and 220 °C. Bioresour Technol 101(23): 9391-9394. https://doi.org/10.1016/j.biortech.2010.06.119
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. 2016. Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines 3(4): 25. https://doi.org/10.3390/medicines3040025
Esteves, M.; Pereira, H.M. 2009. Wood modification by heat treatment: a review. Bioresources 4(1): 370-404. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_04_1_%23%23%23%23_Esteves_P_Wood_Mod_Heat_Treatment
European Committee for Standardization. CEN. 1996. EN 113: Wood preservatives-method of test for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values. Brussels, Belgium.
Fernández-Costas, C.; Palanti, S.; Charpentier, J.P.; Sanromán, M.A.; Moldes, D. 2017. A Sustainable Treatment for Wood Preservation: Enzymatic Grafting of Wood Extractives. ACS Sustainable Chem Eng 5(9): 7557–7567. https://doi.org/10.1021/acssuschemeng.7b00714
Fidah, A.; Salhi, N.; Rahouti, M.; Kabouchi, B.; Ziani, M.; Aberchane, M.; Famiri, A. 2016. Natural durability of Cedrus atlantica wood related to the bioactivity of its essential oil against wood decaying fungi. Maderas-Cienc Tecnol 18(4): 567-576. http://dx.doi.org/10.4067/S0718-221X2016005000049
Habibi Najafi, M.B.; Hajimohamadi Farimani, R.; Tavakoli, J.; Madayeni, S. 2014. GC-MS Analysis and Antimicrobial Activity of the Essential Oil of Trunk Exudates of Pistacia atlantica var. mutica. Chem Nat Compd 50(2): 376-378. https://doi.org/10.1007/s10600-014-0959-z
Hakkou, M.; Pétrissans, M.; Gérardin, P.; Zoulalian, A. 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91(2): 393-397. https://doi.org/10.1016/j.polymdegradstab.2005.04.042
Hamelian, M.; Hemmati, S.; Varmira, K.; Veisi, H. 2018. Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. J Taiwan Inst Chem E 93: 21–30 https://doi.org/10.1016/j.jtice.2018.07.018
Hill, C.A.S. 2006. Wood modification: chemical, thermal and other processes. John Wiley & Sons Ltd, Chichester, West Sussex, England.
Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P.M. 2018. Thermal treatment of wood using vegetable oils: A review. Constr Build Mater 181: 408-419. https://doi.org/10.1016/j.conbuildmat.2018.06.058
Lyona, F.; Thevenonb, M.F.; Hwangc, W.J.; Imamurac, Y.; Grila, J.; Pizzi, A. 2007. Effect of an oil heat treatment on the leachability and biological resistance of boric acid impregnated wood. Ann Forest Sci 64(6): 673–678. http://dx.doi.org/10.1051/forest:2007046
Mohareb, A.S.; Badawy, M.E.; Abdelgaleil, S.A. 2013. Antifungal activity of essential oils isolated from Egyptian plants against wood decay fungi. J Wood Sci 59(6): 499-505. https://doi.org/10.1007/s10086-013-1361-3
Mohebby, B.; Kevily, H.; Kazemi-Najafi, S. 2014. Oleothermal modification of fir wood with a combination of soybean oil and maleic anhydride and its effects on physico-mechanical properties of treated wood. Wood Sci Technol 48(4): 797–809. https://doi.org/10.1007/s00226-014-0640-5
Pourya, M.; Sadeghi, A.; Ghobari, H.; Clauvis Nji Tizi Taning, C.N.T.; Smagghe, G. 2018. Bioactivity of Pistacia atlantica desf. Subsp. Kurdica (Zohary) Rech. F. and Pistacia khinjuk stocks essential oils against Callosobruchus maculatus (F, 1775) (Coloeptera: Bruchidae) under laboratory conditions. J Stored Prod Res 77: 96-105. https://doi.org/10.1016/j.jspr.2018.03.007
Pánek, M.; Reinprecht, L.; Hulla, M. 2014. Ten essential oils for beech wood protection-efficacy against wood-destroying fungi and moulds, and effect on wood discoloration. Bioresources 9(3): 5588-5603. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/5577
Rezaie, R.; Farhoosh, R.; Sharif, A.; Asili, J.; Iranshahi, M. 2015. Chemical composition, antioxidant and antibacterial properties of Bene (Pistacia atlantica subsp. mutica) hull essential oil. J Food Sci Technol 52(10): 6784–6790. https://doi.org/10.1007/s13197-015-1789-0
Sailer, M.; Rapp, A.O.; Leithoff, H. 2000. Improved resistance of Scots pine and spruce by application of an oil-heat treatment. In: The International Research Group on Wood Preservation. IRG/WP 00-40162, Kona, Hawaii, USA.
Salem, N.Z.M.; Zidan, Y.E.; Mansour, M.M.A.; El Hadidi, N.M.N.; Abo Elgat, W.A.A. 2016. Antifungal activities of two essential oils used in the treatment of three commercial wood deteriorated by five common mold fungi. Int Biodeter Biodegr 106: 88-96. https://doi.org/10.1016/j.ibiod.2015.10.010
Salimi, S.; Shafaghat, A.; Sahebalzamani, H.; Alizadeh, M.M.; Rech, F. 2011. α-Pinene from Pistacia atlantica Desf. Subsp. Kurdica (Zohary). Rech F Der Chemica Sinica 2(3): 1-3. http://www.pelagiaresearchlibrary.com/der-chemica-sinica/vol2-iss3/DCS-2011-2-3-1-3.pdf
Shialy, Z.;Zarrin, M.; Sadeghi Nejad, M.; Yusef Naanaie, S. 2015. In vitro antifungal properties of Pistacia atlantica and olive extracts on different fungal species. Curr Med Mycol 1(4): 40–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490281/
Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Ait Ben Aoumar, A. 2012. Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. J Crop Prot 35: 41-46 https://doi.org/10.1016/j.cropro.2011.12.016
Thybring, E.E. 2013. The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. Int Biodeter Biodegr 82: 87-95. https://doi.org/10.1016/j.ibiod.2013.02.004
Waals, J.W.; Chittenden, C.; Kreber, B. 2003. Effect of bioextracts on colonization of radiata pine sapwood by three sapstain fungi. In: The International Research Group on Wood Preservation, IRG/WP 03-10485, Brisbane, Queensland, Australia.
Xie, Y.; Wang, Z.; Huang, Q.; Zhang, D. 2017. Antifungal activity of several essential oils and major components against wood-rot fungi. Ind Crops Prod 108: 278-285. https://doi.org/10.1016/j.indcrop.2017.06.041
Zhang, Z.; Yang, T.; Mi, N.; Wang, Y.; li, G.; Wang, L.; Xie, Y. 2016. Antifungal activity of monoterpenes against wood white-rot fungi. Int Biodeter Biodegr 106: 157-160. https://doi.org/10.1016/j.ibiod.2015.10.018