Economic profitability of particleboards production with a diversified raw material structure


  • Emilia Grzegorzewska
  • Izabela Burawska-Kupniewska
  • Piotr Boruszewski


Fast-growing trees plantation, particleboards, material unit cost, production costs reduction, wood based panels


To achieve sustainable development, coherence of three key elements is necessary: economic growth, social inclusion and environmental protection. They are interconnected and all are extremely important for achieving the well-being of individuals and entire societies. One of the key drivers of sustainable economic growth is the furniture industry, which is related to the maximum optimization of production cost while maintaining the high quality of the offered products. However, the expected material deficit may contribute to a significant weakening of growth dynamics. One of the possible solutions to this problem is harvesting timber from plantations of fast-growing trees that could supplement the increasing deficit of wood raw material. The research aimed to determine the cost-effectiveness of particleboard technology modification involving the change in the structure of raw material by introducing wood from fast-growing tree plantations. The research included an estimation of the unit cost of 1 m3 particleboard manufactured in the series production process. The analysis was carried out on the example of one of the leading particleboard suppliers for the Polish furniture industry and consisted in comparing the cost of production of particleboards based on wood from fast-growing tree plantations with the cost of particleboards, which are commonly available on the market. Three variants of the diversified raw material structure were taken into account: 100 % share (1), 50 % share (2) and 25 % share (3) of raw material from fast-growing tree plantations. The time range of the studies was adopted for the years 2014-2020. The research indicates that the introduction of wood from fast-growing tree plantations into the production of particleboards enables the production of material and energy cost savings at the level of 6 % (3rd variant) to even 17 % (1st variant). Variant 1 of material structure can lead to cost reduction at the level of EUR 11,6 million (in case of particleboards production capacity 570000 m3).



Download data is not yet available.


Augustyniak, D.; Minska-Struzik, E. 2018. The competitiveness of polish furniture exports. Drewno 61(202): 21-38.

Boruszewski, P. 2012. Raw materials for the wood based composites industry. In Raw Materials and Particleboards - a Current Status and Perspectives Part I: 5-20. Boruszewski, P.; Mamiński, M.; Ružinská, E. (Eds.). WULS-SGGW Press. Warsaw, Poland.

Boruszewski, P.; Borysiuk, P.; Mamiński, M.; Czechowska, J. 2016. Mat compression measurements during low - density particleboard manufacturing. BioResources 11(3): 6909-6919.

Boruszewski, P.; Jankowska, A.; Kurowska, A. 2017. Comparison of the structure of juvenile and mature wood of Larix decidua Mill. from fast-growing plantations in Poland. BioResources 12(1): 1813-1825.

Bradshaw Jr., H.D.; Strauss, S.H. 2001. Breeding strategies for the 21st Century: domestication of poplar. In Poplar Culture in North America. Part B, Chapter 14: 383-394.

Dickmann, D.I.; Isebrands, J.G.; Eckenwalder, J.H.; Richardson, J. (Eds.). National Research Council Press. Ottawa, Canada.

Bredemeier, M; Busch, G.; Hartmann, L.; Jansen, M.; Richter, F.; Lamersdorf, N.P. 2015. Fast growing plantations for wood production—integration of ecological effects and economic perspectives. Front Bioeng Biotech 3: 72.

Brunner, A.M.; Li, J.; Difazio, S.P.; Shevchenko, O.; Montgomery, B.E.; Mohamed, R.; Wei, H.; Ma, C.; Elias, A.A.; Van Wormer, K.; Strauss, S.H. 2007. Genetic containment of forest plantations. Tree Genet Genomes 3(2): 75-100.

Carle, J. B.; Holmgren, L.P.B. 2009. Wood from planted forests: Global outlook to 2030, Planted Forests: Uses, Impacts and Sustainability. J. Evans (ed.), CAB International and Food and Agriculture Organization of the United Nations, Rome, Italy.

Central Statistical Office. 2020.,1,1.html (accessed on 15 may 2020).

Central Statistical Office. 2020.,6,8.html (accessed on 15 may 2020).

Dalton, D.A.; Ma, C.; Shrestha, S.; Kitin, P.; Strauss, S.H. 2011. Trade-offs between biomass growth and inducible biosynthesis of polyhydroxybutyrate in transgenic poplar. Plant Biotechnol J 9(7): 759-767.

Del Lungo, A.; Ball, J.; Carle, J. 2006. Global planted forests thematic study: results and analysis. (Planted Forests and Trees Working Paper FP/38E), Food and Agricultural Organization, Rome, Italy.

Flachowsky, H.; Hanke, H.; Peil, M.V.; Strauss, S.H.; Fladung, M. 2009. A review on transgenic approaches to accelerate breeding of woody plants. Plant Breeding 128(3): 217-226.

Gamborg, C.; Sandoe, P. 2010. Ethical considerations regarding genetically modified trees. In Forests and genetically modified trees: 163-175. El-Kassaby, Y.A.; Prado, J.A. (Eds.). The Food and Agriculture Organization of the United Nations (FAO). Rome, Italy.

Gatani, M. P.; Fiorelli, J.; Medina, J. C.; Arguelo, R.; Ruiz, A.; Nascimento, M. F.; Savastano Jr., H. 2013. Technical production viability and properties of particleboard made with peanut husks. Materia 18(2): 1286-1293.

Grzegorzewska, E.; Więckowska, M. 2017. The economic profitability of polish furniture market against a background of the industry sector. In Proceedings of 10th International Scientific Conference WoodEMA. Czech University of Life Sciences Press. Prague, Czech Republic. pp. 218-224.

Grzegorzewska, E.; Boruszewski, P.; Jenczyk-Tolloczko, I. 2016. Trends in middle-sized wood supply on the Polish market in 2011-2015. Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology 94: 246-250.

Grzegorzewska, E.; Stasiak-Betlejewska, R. 2014. The influence of global crisis on financial liquidity and changes in corporate debt of the furniture sector in Poland. Drvna Ind 65(4): 315-322.

James, R.R.; Difazio, S.P.; Brunner, A.M.; Strauss, S.H. 1998. Environmental effects of genetically engineered woody biomass crops. Biomass Bioenerg 14(4): 403-414.

Johansson, T. 2013. Biomass equations for hybrid larch growing on farmland. Biomass Bioenerg 49: 152-159.
Khalil, H.A.; Firdaus, M.N.; Jawaid, M.; Anis, M.; Ridzuan, R.; Mohamed, A. R. 2010. Development and material properties of new hybrid medium density fibreboard from empty fruit bunch and rubberwood. Mater Design 31(9): 4229-4236.

Lang, C. 2004. Genetically modified trees: the ultimate threat to forests. World Rainforest Movement Press. Montevideo, Uruguay.

Mirski, R.; Boruszewski, P.; Trociński, A.; Dziurka, D. 2017. The possibility to use long fibres from fast growing hemp (Cannabis sativa L.) for the production of boards for the building and furniture industry. BioResources 12(2): 3521-3529.

Muhs, H.J. 2010. Regulation for genetically modified forest reproductive material moving in international trade. In Forests and genetically modified trees: 163-175. El-Kassaby, Y.A.; Prado, J.A. (Eds.). The Food and Agriculture Organization of the United Nations (FAO). Rome, Italy.

Nicewicz, D.; Boruszewski, P.; Klimczewski, M. 2012. Influence of addition of wood from containers and pallets and selected technological parameters on the properties of MDF. Wood Res-Slovakia 57(2): 309-316.

Padzil, F. N. M.; Ariffin, H.; Zakaria, S.; Boruszewski, P.; Krajewski, K.; Mamiński, M. 2018. Effect of Poplar cultivar “Hybrid 275” fiber impregnation with DMDHEU on the properties of high density fiberboards. Bioresources 13(4): 7470-7480.

Park, Y.W.; Baba, K.; Furuta, Y.; Iida, I.; Sameshima, K.; Arai, M.; Hayashi, T. 2004. Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Letters 564(1-2): 183-187.

Przybysz, K.; Małachowska, E.; Martyniak, D.; Boruszewski, P.; Iłowska, J.; Kalinowska, H.; Przybysz, P. 2018. Yield of pulp, dimensional properties of fibers, and properties of paper produced from fast Growing trees and grasses. BioResources 13(1): 1372-1387.

Ratajczak, E. 2013. Sektor leśno-drzewny w zielonej gospodarce. ITD Press. Poznań, Poland.

Strauss, S.H.; Brunner, A.M.; Busov, V.B.; Ma, C.; Meilan, R. 2004. Ten lessons from 15 years of transgenic Populus research. Forestry 77(5): 455-465.

Strauss, S.H.; Raffa, K.F.; List, P.C. 2000. Ethics and genetically engineered Plantations. J Forest 98(7): 47-48.

Szostak, A.; Bidzińska, G.; Ratajczak, E.; Herbeć, M. 2013. Wood biomass from plantations of fast-growing trees as an alternative source of wood raw material in Poland. Drewno 56(190): 85-113.

Varanda, L. D.; Nascimento, M. F.; Christoforo, A. L.; Silva, D. A. L.; Lahr, F. A. R. 2013. Oat hulls as addition to high density panels production. Mat Res 16(6): 1355-1361.

Voelker, S.L.; Lachenbruch, B.; Meinzer, F.C.; Kitin, P.; Strauss, S.H. 2011. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. Plant Cell Environ 34(4): 655-668.

Zajaczkowski, K. 2006. Dobór odmian topól i wierzb do uprawy na plantacjach drzew szybkorosnących. In Elementy genetyki i hodowli selekcyjnej drzew leśnych: 281-301. Sabor, J. (Ed.). Centrum Informacyjne Lasów Państwowych Press. Warsaw, Poland.

Zamora, D.; Wyatt, G.; Apostol, K.; Tschirner, U. 2013. Biomass yield, energy values, and chemical composition of hybrid poplar in short rotation woody crops production and native perennial grasses in Minnesota, USA. Biomass Bioenerg 49: 222-230.




How to Cite

Grzegorzewska, E., Burawska-Kupniewska, I., & Boruszewski, P. (2020). Economic profitability of particleboards production with a diversified raw material structure. Maderas-Cienc Tecnol, 22(4), 537–548. Retrieved from