Evaluation of Pleurotus ostreatus basidiomes production on pinus sawdust and other agricultural and forestry wastes from patagonia, Argentina
Keywords:
Edible mushroom, pine, sawdust, spent beer grain, wood wastesAbstract
The basidiomes production of two strains of Pleurotus ostreatus (one native from Patagonia, Argentina, isolated from the conifer Araucaria araucana and the other one a commercial strain) grown in different agricultural and forestry wastes was studied. The ability of the native strain generates interest to know its degradative capabilities for its use with conifer waste from the regional forest industry, which is dominated by the use of exotic Pinus species. In addition, white poplar (Populus alba), southern beech (Nothofagus pumilio), wheatgrass (Thinopyrum ponticum) and residues from beer brewing were also explored as substrates. The native strain showed better productivity of basidiomes with a biological efficiency of 17,86 % ± 3,74 % on pine wood shavings in comparison with the commercial strain used as control. The best substrates were poplar and wheatgrass with biological efficiency between 35,28 % to 88,5 % and 27,84 % to 84,01 %, respectively. Supplemented substrates showed better productivity than those without supplement. The low biological efficiency on pine could be attributed to the aromatic compounds contents because, in growth test, the diameter of the fungal colony was affected negatively by the addition of pine resin volatiles, mainly with α-limonene and δ-3-carene. In spite of the low biological efficiency, promising inter-breeding or hybrids generation could improve yields in future assays.
Downloads
References
Albertó, E.; Curvetto, N.; Deschamps, J.; González Matute, R.; Lechner, B. 2010. Hongos Silvestres y de Cultivo en Argentina: Historia, regiones y sistemas de producción, hongos silvestres de valor económico, consumo, mercado interno y externo, legislación, oferta tecnológica e investigación y desarrollo. In Hacia un desarrollo sostenible del sistema de producción-consumo de los hongos comestibles y medicinales en Latinoamérica: avances y perspectivas en el siglo XXI, Capítulo 19: 333-358. Martínez-
Carrera, D., Curvetto, N., Sobal, M., Morales, P., Mora, V.M. (Eds.). Red Latinoamericana de Hongos Comestibles y Medicinales, Puebla, México. http://ici.unq.edu.ar/ici_tps/tp_ici1/2010%20Capitulo%20Albert%C3%B3%20et%20al.%20Argentina%20110310.pdf
Bava, J.O.; Lopez Bernal, P.M. 2006. Cortas de selección en grupo en bosques de lenga de Tierra del Fuego. Quebracho 13: 77-86. https://www.redalyc.org/pdf/481/48101308.pdf
Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Júnior, A.M.; Ribani, R.H. 2016. Factors affecting mushroom Pleurotus spp. Saudi J Biol Sci 26: 636-646. http://dx.doi.org/10.1016/j.sjbs.2016.12.005
Birhanli, E.; Yesilada, O. 2017. The effect of various inducers and their combinations with copper on laccase production of Trametes versicolor pellets in a repeated-batch process. Turk J Biol 41: 587-599. http://dx.doi.org/10.3906/biy-1608-44
Bonanomi, G.; Caporaso, S.; Allegrezza, M. 2006b. Short-term effect of nitrogen enrichment, litter removal and cutting on a Mediterranean grassland. Acta Oecol 30: 419–425. https://dx.doi.org/10.1016/j.actao.2006.06.007
Bonanomi, G.; Giorgi, V.; Giovanni, D.S.; Neri, D.; Scala, F. 2006a. Olive mill residues affect saprophytic growth and disease incidence of foliar and soilborne plant fungal pathogen. Agric Ecosyst Environ 115: 194–200. https://dx.doi.org/10.1016/j.agee.2006.01.002
Céspedes, C.L.; Avilab, G.J.; García, A.M.; Becerra, J.; Flores, C.; Aqueveque, P.; Bittner, M.; Hoeneisen, M.; Martínez, M.; Silva, M. 2005. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z Nat forsch 61(1-2): 35-43. http://dx.doi.org/10.1515/znc-2006-1-207
Chang, S.T.; Miles, P.G. 2004. Mushrooms Cultivation, Nutritional value, Medicinal effect, and Enviromental Impact. CRC Press, Boca Raton, United States of America. 451p.
Croan, S.C. 2003. Utilization of treated conifer wood chips by Pleurotus (Fr.) P. Karst. species for cultivating mushrooms. Mushrooms International 91: 4-7. https://www.fpl.fs.fed.us/documnts/pdf2003/croan03a.pdf
Datri, L.A.; Faggi, A.M.; Gallo, L.A. 2016. Entre el orden y el caos: invasiones con dinámicas no lineales de sauces y álamos en el norte de la Patagonia. Rev Asoc Argent Ecol Paisajes 6(1): 12-22.
El-Haggar, S.M. 2007. Sustainability of Agricultural and Rural Waste Management. In Sustainable Industrial Design and Waste Management. Chapter 7: 223–260. Elsevier. http://dx.doi.org/10.1016/b978-012373623-9/50009-5
Gallo, A.L.; Moretto, A.; López Bernal, P.; Greslebin, A. 2019. Characterization and decomposition of Nothofagus pumilio fine woody material. Can J For Res 49(6): 715-720. https://dx.doi.org/10.1139/cjfr-2018-0185
García, J.; Aguerre, M.; Denegri, G.A.; Acciaresi, G. 2017. Aplicación del sistema de valor a la planificación del desarrollo de las cadenas forestoindustriales de álamos ubicadas en el norte de la Patagonia argentina. DELOS 10(29): 1-16. http://www.eumed.net/rev/delos/29/index.html
Garuba, T.; Abdulkareem, K.A.; Ibrahim, I.A.; Oyebamiji, O.I.; Shoyoye, O.A.; Ajibade, T.D. 2017. Influence of substrates on the nutritional quality of Pleurotus pulmonarius and Pleurotus ostreatus. Ceylon J Sci 46(1): 67-74. https://dx.doi.org/10.4038/cjs.v46i1.7419
Gregori, A.; Švagelj, M.; Pahor, B.; Berovič, M.; Pohleven, F. 2008. The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production. New Biotechnol 25(2-3): 157-161. https://dx.doi.org/10.1016/j.nbt.2008.08.003
Hess, J.; Leitner, C.; Galhaup, C.; Kulbe, K.D.; Hinterstoisser, B.; Steinwender, M.; Haltrich, D. 2002. Enhanced formation of extracellular laccase activity by the white-rot fungus Trametes multicolor. Appl Biochem Biotechnol 98-100: 229-241. http://dx.doi.org/10.1385/abab:98-100:1-9:229
Himejima, M.; Hobson, K.R.; Otsuka, T.; Wood, D.L.; Kubo, I. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion. J Chem Ecol 18: 1809–1818. http://dx.doi.org/ 10.1007/BF02751105
InfoStat. 2017. Version 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina. http://www.infostat.com.ar
Jaramillo Mejía, S.; Albertó, E. 2013. Heat treatment of wheat straw by immersion in hot water decreases mushroom yield in Pleurotus o
streatus. Rev Iberoam Micol 30(2): 125-129. http://dx.doi.org/10.1016/j.riam.2012.11.004
Jovanovski, A.; Robles, G.; Davel, M. 2011. Propiedades físicas de la madera de Populus spp. proveniente de cortinas forestales plantadas en Esquel, Chubut, Argentina. Trabajo Técnico. In Actas del Tercer Congreso Internacional de Salicáceas en Argentina. Neuquén, Argentina. 6 p. https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0cmFiYWpvc3RlY25pY29zanMyMDExfGd4OjYyMTg2M2NjYTIyNDgxNWQ
Koroljova-Skorobogat’ko, O.V.; Stepanova, E.V.; Gavrilova, V.P.; Morozova, O.V.; Lubimova, N.V.; Dzchafarova, A.N.; Jaropolov, A.I.; Makower, A. 1998. Purification and characterization of the constitutive form of laccase from the basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis. Biotechnol Appl Biochem 28(1): 47-54. https://doi.org/10.1111/j.1470-8744.1998.tb00511.x
Kubicek, C.P. 2013. Fungi and lignocellulosic biomass. John Wiley & Sons, Inc. Iowa, United States of America. 304p.
Kuhar, F.; Papinutti, L. 2014. Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers. Rev Argent Microbiol 46(2): 144-149. https://dx.doi.org/10.1016/S0325-7541(14)70063-X
Kumari, D.; Achal, V. 2008. Effect of different substrates on the production and non-enzymatic antioxidant activity of Pleurotus ostreatus (Oyster mushroom). Life Sci 5(3): 73-76. http://www.lifesciencesite.com/lsj/life0503/12_life0503_73_76_Effect.pdf
Lara, M.; Arias, A.; Villaseñor, L. 2002. Cultivation of Pleurotus ostreatus and P. pulmonarius on spent brewer’s grain and tequila maguey bagasse. In Proceedings IV International Conference on Mushroom Biology and Mushroom Products. Cuernavaca, México. 323-330 pp.
Lechner, B.E.; Albertó, E. 2002. Empleo de desechos húmedos de malta cervecera para la producción de Pleurotus ostreatus. In IV Congreso Latinoamericano de Micología. Asociación Latinoamericana de Micología. Xalapa, Veracruz, México.
Lechner, B.E.; Petersen, R.; Rajchenberg, M.; Albertó E. 2002. Presence of Pleurotus ostreatus in Patagonia, Argentina. Rev Iberoam Micol 19(2): 111-114. http://www.reviberoammicol.com/2002-19/111114.pdf
Lechner, B.E.; Wright, J.E.; Albertó, E. 2004. The genus Pleurotus in Argentina. Mycologia 96(4): 845-858. https://dx.doi.org/10.1080/15572536.2005.11832931
Lechner, B.E.; Albertó, E. 2011. Search for new naturally occurring strains of Pleurotus to improve yields. Pleurotus albidus as a novel proposed species for mushroom production. Rev Iberoam Micol 28(4): 148–154. http://dx.doi.org/10.1016/j.riam.2010.12.001h
López, S.N.; Greslebin, A.G.; González, S.B.; Pildain, M.B. 2013. Efecto del potencial agua y de la defensa primaria del hospedante sobre el crecimiento de Amylostereum areolatum y A. chailletii, simbiontes fúngicos de los sirícidos, y estudio de la micobiota asociada a la madera de coníferas en Patagonia, Argentina. Bosque 34(2): 161-171. http://dx.doi.org/10.4067/S0717-92002013000200005
Lorenzo, M.; Moldes, D.; Sanromán, M.A. 2006. Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolorize dyes. Chemosphere 63(6): 912-917. http://dx.doi.org/10.1016/j.chemosphere.2005.09.046
Martínez, A.T.; Speranza, M.; Ruiz-Dueñas, F.; Ferreira, N. P.; Camarero, S.; Guillen, F.; Martínez, M.J.; Gutiérrez, A.; del Río, J.C. 2005. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3): 195-204. http://dx.doi.org/10.13039/501100003339
Naraian, R.; Singh, M. P.; Ram, S. 2016. Supplementation of basal substrate to boost up substrate strength and oyster mushroom yield: An overview of substrates and supplements. Int J Curr Microbiol Appl Sci 5(5): 543-553. http://dx.doi.org/ 10.20546/ijcmas.2016.505.056
Palmieri, G.; Giardina, P.; Bianco, C.; Fontanella, B.; Sannia, G. 2000. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostretatus. Appl Environ Microbiol 66(3): 920–924. http://dx.doi.org/10.1128/aem.66.3.920-924.2000h
Paine, T.D.; Hanlon, C.C. 1994. Influence of oleoresin constituents from Pinus ponderosa and Pinus jeffreyi on the growth of the mycangial fungi from Dendroctonus ponderosae and Dendroctonus brevicomis. J Chem Ecol 20(10): 2551-63. http://dx.doi.org/10.1007/BF02036191
Patra, A.K.; Pani, B.K. 1995. Evaluation of banana leaf as a new alternative substrate to paddy straw for oyster mushroom cultivation. J Phytol Res 8(2): 145-148. http://www.jphytolres.org/system/files/old_papers/9_15.pdf
Pérez Merlo, R.; Mata, G. 2005. Cultivo y selección de cepas de Pleurotus ostreatus y P. pulmonarius en viruta de pino: obtención de nuevas cepas y evaluación de su producción. Rev Mex Mic 20: 53-59. https://www.redalyc.org/pdf/883/88302009.pdf
Philippoussis, A.N.; Zervakis, G.I.; Diamantopoulou, P.A. 2001. Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J Microb Biot 17(2): 191-200. http://dx.doi.org/ 10.1023/A:1016685530312
Postemsky, P.D.; Bidegain, M.A; González-Matute, R.; Figlas, N.D.; Cubitto, M.A. 2017. Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. Bioresour Technol 231: 85–93. http://dx.doi.org/10.1016/j.biortech.2017.01.064
Ramírez-García, R.; Gohil, N.; Singh, V. 2019. Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. In Phytomanagement of Polluted Sites. Chapter 21: 517–568. Pandey, V. C.; Bauddh, K. (Eds). Elsevier. http://dx.doi.org/10.1016/b978-0-12-813912-7.00021-1
Rugolo, M.; Levin, L.; Lechner, B.E. 2016. Flammulina velutipes: an option for alperujo use. Rev Iberoam Micol 33(4): 242-247. http://dx.doi.org/10.1016/j.riam.2015.12.001
Ruiz-Dueñas, F.J.; Martinez, A.T. 2009. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2(2): 164-77. http://dx.doi.org/10.1111/j.1751-7915.2008.00078.xh
Salmones, D.; Mata, G.; Waliszewski, K.N. 2005. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresour Technol 96(5): 537-544. http://dx.doi.org/10.1016/j.biortech.2004.06.019h
Serrano, J.; Puupponen-Pimiä, R.; Dauer, A.; Aura, A.M.; Saura-Calixto, F. 2009. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53: 310–329. http://dx.doi.org/10.1002/mnfr.200900039
Schilling, B.C.; Linden, R.M.; Kupper, U.; Lerch, K. 1992. Expression of Neurospora crassa laccase under the control of the copper-inducible metallothionein-promoter. Curr Genet 22(3): 197-203. http://dx.doi.org/10.1007/bf00351726
Schmidt, O. 1986. Experiments with mushroom cultivation on wood waste. Plant Res Developm 24: 85-92.
Van Soest, P.J. 1963. Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 46(5): 829-835.
Wang, D.; Sakoda, A.; Suzuki, M. 2001. Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol 78(3): 293-300. http://dx.doi.org/10.1016/S0960-8524(01)00002-5
Yildiz, S.; Yildiz, Ü.C.; Gezer, E.D.; Temiz, A. 2002. Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochem 38(3): 301–306. http://dx.doi.org/10.1016/s0032-9592(02)00040-7
Zadražil, F. 1978. Cultivation of Pleurotus. In The Biology and Cultivation of Edible Mushrooms 521–557. http://dx.doi.org/10.1016/b978-0-12-168050-3.50031-1