Energy gains of eucalyptus by torrefaction process
DOI:
https://doi.org/10.4067/s0718-221x2021000100403Keywords:
Biomass, Eucalyptus spp, pretreatment, thermal characterization, torrefactionAbstract
The aim of this study was to evaluate the changes in the characteristics of Eucalyptus spp. from Paraíba Valley region, Sao Paulo - Brazil after torrification process. Torrification is a thermochemical process that occurs at temperatures lower than the pyrolysis process as a pretreatment to improve biomass characteristics for use as biofuel energy in power generation. An experimental study was carried out in a batch reactor at three temperatures (240 °C, 260 °C and 280 °C) with residence time of 30 and 60 minutes. At the indicated operating conditions by elemental analysis, higher heating value and thermogravimetric analysis were evaluated. Result showed that there was a reduction in the oxygen/carbon (O/C) and hydrogen/carbon (H/C) ratios, causing an increase in the thermal energy quality of torrified wood, about of 28 % and 47 % at temperatures of 260 °C with residence time of 60 minutes and 280 °C with 30 minutes, respectively. A thermogravimetric analysis showed that at 260 °C the hemicellulose was almost completely degraded leaving the fuel in better conditions for combustion or gasification processes.
Downloads
References
American Society for Testing and Materials. 2019. ASTM D5865-19: Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International. West Conshohocken, PA, USA. https://doi.org/10.1520/D5865_D5865M-19.
Arias, B.R.; Pevida, C.G.; Fermoso, J.D.; Plaza, M.G.; Rubiera, F.G.; Pis Martinez, J.J. 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2): 169–175. https://dx.doi.org/10.1016/j.fuproc.2007.09.002.
Artega-Pérez, L.E.; Segura, C.; Bustamante-García, V.; Cápiro, O.G.; Jiménez, R. 2015. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures. Energy 93: 1731-1741. https://doi.org/10.1016/j.energy.2015.10.007.
Bergman, P.C.A.; Boersma, A.R.; Kiel, J.H.A.; Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. 2004. Torrefaction for entrained-flow gasification of biomass. (ECN-C; Vol. 2005067). Petten: Energieonderzoek Centrum Nederland. Netherlands. https://pure.tue.nl/ws/portalfiles/portal/3167898/638046.pdf.
Bridgeman, T.G.; Jones, J.M. 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6): 844-856. https://doi.org/10.1016/j.fuel.2007.05.041.
Cardona, S.; Gallego, L.J.; Valencia, V.; Martinez, E.; Rios, L.A. 2019. Torrefaction of Eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustainable Energy Technologies and Assessments 31: 17-24. https://doi-org.ez67.periodicos.capes.gov.br/10.1016/j.seta.2018.11.002.
Chen, W.H.; Huang, M.Y.; Chang, J.S.; Chen, C.Y.; Lee, W.J. 2015. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel. Bioresour Technol 185: 285-293. https://doi.org/10.1016/j.biortech.2015.02.095.
Couto, L.; Dube, F. 2001. The status and practice of forestry in Brazil at the beginning of the 21st century: A review. Forest Chron 77(5): 817-830. https://doi.org/10.5558/tfc77817-5.
Da Silva, C.M.S.; Vital, B.R.; Carneiro, A.C.O.; Costa, E.V.S.; Magalhaes, M.A.; Trugilho, P.F. 2017. Structural and compositional changes in eucalyptus wood chips subjected to dry torrefaction. Ind Crop Prod 109: 598–602. http://dx.doi.org/10.1016/j.indcrop.2017.09.010.
Da Silva, C.M.S.; Carneiro, A.C.O.; Pereira, B.L.C.; Vital, B.R.; Alves, I.C.N.; Magalhães, M.A. 2016. Stability to thermal degradation and chemical composition of woody biomass subjected to the torrefaction process. Eur J Wood Wood Prod 74(6): 845-850. https://doi.org/10.1007/s00107-016-1060-z.
Eufrade, H.J.; Melo, R.X.; Sartori, M.M.P.; Guerra, S.P.S.; Ballarin, A.W. 2016. Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass Bioenerg 90: 15-21. http://dx.doi.org/10.1016/j.biombioe.2016.03.037.
Fialho, L.F.; Carneiro, A.C.O.; Carvalho, A.M.M.L.; Figueiró, C.G.; Da Silva, C.M.S.; Magalhães, M.A.; Peres, L.C. 2019. Bio-coal production with agroforestry biomasses in Brazil. Maderas-Cienc Tecnol 21(3): 357-366. http://dx.doi.org/10.4067/S0718-221X2019005000308.
Figueiró, C.G.; Vital, B.R.; Carneiro A.C.O.; Silva, C.M.S.; Magalhães, M.A.; Fialho, L.F.; 2019. Energy valorization of woody biomass by torrefaction treatment: A Brazilian experimental study. Maderas-Cienc Tecnol 21(3): 297-304. https://doi.org/10.4067/S0718-221X2019005000302.
Indústria Brasileira De Árvores. IBA. 2017. Relatório 2017. IBÁ. Brazil. 80p. https://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf.
Lu, K.M.; Lee, W.J.; Chen, W.H.; Lin, T.C. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl Energ 105: 57-65. http://dx.doi.org/10.1016/j.apenergy.2012.12.050.
Pereira, B.L.C; Carneiro, A.C.O.; Carvalho, A.M.M.L.; Trugilho, P.F.; Melo, I.C.N.A.; Oliveira, A.C.; 2013. Study of termal degradation of Eucalyptus wood by thermogravimetry and calorimetry. Rev Arvore 37(3): 567-576. http://www.redalyc.org/articulo.oa?id=48828116020.
Ramos-Carmona, S.; Pérez, J.F.; Pelaez-Samaniego, M.R.; Barrera, R.; Garcia-Perez, M. 2017. Effect of torrefaction temperature on properties of Patula pine. Maderas-Cienc Tecnol 19(1): 39 - 50. http://dx.doi.org/10.4067/S0718-221X2017005000004.
Romão, E.L.; Dias, I.A., Conte, R.A.; Pinatti, D.G. 2016. Avaliação do efeito da torrefação de biomassa lenhosa visando à produção de biocombustível para fins energéticos. In XXI Congresso Brasileiro de Engenharia Química – COBEQ, Fortaleza, CE, Brazil. (in portuguese). https://proceedings.science/proceedings/44/_papers/40957/download/fulltext_file1.
Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. 2011. A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15(5): 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015.
Sami, M.; Annamalai, K.; Wooldridge, M. 2001. Co-firing of coal and biomass fuel blends. Prog Energ Combust 27(2): 171–214. https://doi.org/10.1016/S0360-1285(00)00020-4.
Santana, R.C.; Barros, N.F.; Leite, H.G.; Comerford, N.B.; Novais, R.F. 2008. Biomass estimation of Brazilian eucalypt plantations. Rev Arvore 32(4): 697-706. https://doi.org/10.1590/S0100-67622008000400011.
Tumuluru, J.S.; Sokhansanj, S; Wright, C.T.; Boardman, R.D. 2010. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development. Idaho National Laboratory Biofuels and Renewable Energy, Technologies Department Idaho Falls, EUA. https://inldigitallibrary.inl.gov/sites/sti/sti/4734111.pdf.
Van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. 2011. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass bioenerg 35: 3748-3762. https://doi.org/10.1016/j.biombioe.2011.06.023.
Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013.
Downloads
Published
Versions
- 2020-11-15 (2)
- 2021-01-01 (1)
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.