Energy gains of eucalyptus by torrefaction process

Authors

  • Erica Leonor Romão
  • Rosa Ana Conte

DOI:

https://doi.org/10.4067/s0718-221x2021000100403

Keywords:

Biomass, Eucalyptus spp, pretreatment, thermal characterization, torrefaction

Abstract

The aim of this study was to evaluate the changes in the characteristics of Eucalyptus spp. from Paraíba Valley region, Sao Paulo - Brazil after torrification process. Torrification is a thermochemical process that occurs at temperatures lower than the pyrolysis process as a pretreatment to improve biomass characteristics for use as biofuel energy in power generation. An experimental study was carried out in a batch reactor at three temperatures (240 °C, 260 °C and 280 °C) with residence time of 30 and 60 minutes. At the indicated operating conditions by elemental analysis, higher heating value and thermogravimetric analysis were evaluated. Result showed that there was a reduction in the oxygen/carbon (O/C) and hydrogen/carbon (H/C) ratios, causing an increase in the thermal energy quality of torrified wood, about of 28 % and 47 % at temperatures of 260 °C with residence time of 60 minutes and 280 °C with 30 minutes, respectively. A thermogravimetric analysis showed that at 260 °C the hemicellulose was almost completely degraded leaving the fuel in better conditions for combustion or gasification processes.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials. 2019. ASTM D5865-19: Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International. West Conshohocken‎, PA, USA. https://doi.org/10.1520/D5865_D5865M-19.

Arias, B.R.; Pevida, C.G.; Fermoso, J.D.; Plaza, M.G.; Rubiera, F.G.; Pis Martinez, J.J. 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2): 169–175. https://dx.doi.org/10.1016/j.fuproc.2007.09.002.

Artega-Pérez, L.E.; Segura, C.; Bustamante-García, V.; Cápiro, O.G.; Jiménez, R. 2015. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures. Energy 93: 1731-1741. https://doi.org/10.1016/j.energy.2015.10.007.

Bergman, P.C.A.; Boersma, A.R.; Kiel, J.H.A.; Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. 2004. Torrefaction for entrained-flow gasification of biomass. (ECN-C; Vol. 2005067). Petten: Energieonderzoek Centrum Nederland. Netherlands. https://pure.tue.nl/ws/portalfiles/portal/3167898/638046.pdf.

Bridgeman, T.G.; Jones, J.M. 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6): 844-856. https://doi.org/10.1016/j.fuel.2007.05.041.

Cardona, S.; Gallego, L.J.; Valencia, V.; Martinez, E.; Rios, L.A. 2019. Torrefaction of Eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustainable Energy Technologies and Assessments 31: 17-24. https://doi-org.ez67.periodicos.capes.gov.br/10.1016/j.seta.2018.11.002.

Chen, W.H.; Huang, M.Y.; Chang, J.S.; Chen, C.Y.; Lee, W.J. 2015. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel. Bioresour Technol 185: 285-293. https://doi.org/10.1016/j.biortech.2015.02.095.

Couto, L.; Dube, F. 2001. The status and practice of forestry in Brazil at the beginning of the 21st century: A review. Forest Chron 77(5): 817-830. https://doi.org/10.5558/tfc77817-5.

Da Silva, C.M.S.; Vital, B.R.; Carneiro, A.C.O.; Costa, E.V.S.; Magalhaes, M.A.; Trugilho, P.F. 2017. Structural and compositional changes in eucalyptus wood chips subjected to dry torrefaction. Ind Crop Prod 109: 598–602. http://dx.doi.org/10.1016/j.indcrop.2017.09.010.

Da Silva, C.M.S.; Carneiro, A.C.O.; Pereira, B.L.C.; Vital, B.R.; Alves, I.C.N.; Magalhães, M.A. 2016. Stability to thermal degradation and chemical composition of woody biomass subjected to the torrefaction process. Eur J Wood Wood Prod 74(6): 845-850. https://doi.org/10.1007/s00107-016-1060-z.

Eufrade, H.J.; Melo, R.X.; Sartori, M.M.P.; Guerra, S.P.S.; Ballarin, A.W. 2016. Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass Bioenerg 90: 15-21. http://dx.doi.org/10.1016/j.biombioe.2016.03.037.

Fialho, L.F.; Carneiro, A.C.O.; Carvalho, A.M.M.L.; Figueiró, C.G.; Da Silva, C.M.S.; Magalhães, M.A.; Peres, L.C. 2019. Bio-coal production with agroforestry biomasses in Brazil. Maderas-Cienc Tecnol 21(3): 357-366. http://dx.doi.org/10.4067/S0718-221X2019005000308.

Figueiró, C.G.; Vital, B.R.; Carneiro A.C.O.; Silva, C.M.S.; Magalhães, M.A.; Fialho, L.F.; 2019. Energy valorization of woody biomass by torrefaction treatment: A Brazilian experimental study. Maderas-Cienc Tecnol 21(3): 297-304. https://doi.org/10.4067/S0718-221X2019005000302.

Indústria Brasileira De Árvores. IBA. 2017. Relatório 2017. IBÁ. Brazil. 80p. https://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf.

Lu, K.M.; Lee, W.J.; Chen, W.H.; Lin, T.C. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl Energ 105: 57-65. http://dx.doi.org/10.1016/j.apenergy.2012.12.050.

Pereira, B.L.C; Carneiro, A.C.O.; Carvalho, A.M.M.L.; Trugilho, P.F.; Melo, I.C.N.A.; Oliveira, A.C.; 2013. Study of termal degradation of Eucalyptus wood by thermogravimetry and calorimetry. Rev Arvore 37(3): 567-576. http://www.redalyc.org/articulo.oa?id=48828116020.

Ramos-Carmona, S.; Pérez, J.F.; Pelaez-Samaniego, M.R.; Barrera, R.; Garcia-Perez, M. 2017. Effect of torrefaction temperature on properties of Patula pine. Maderas-Cienc Tecnol 19(1): 39 - 50. http://dx.doi.org/10.4067/S0718-221X2017005000004.

Romão, E.L.; Dias, I.A., Conte, R.A.; Pinatti, D.G. 2016. Avaliação do efeito da torrefação de biomassa lenhosa visando à produção de biocombustível para fins energéticos. In XXI Congresso Brasileiro de Engenharia Química – COBEQ, Fortaleza, CE, Brazil. (in portuguese). https://proceedings.science/proceedings/44/_papers/40957/download/fulltext_file1.

Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. 2011. A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15(5): 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015.

Sami, M.; Annamalai, K.; Wooldridge, M. 2001. Co-firing of coal and biomass fuel blends. Prog Energ Combust 27(2): 171–214. https://doi.org/10.1016/S0360-1285(00)00020-4.

Santana, R.C.; Barros, N.F.; Leite, H.G.; Comerford, N.B.; Novais, R.F. 2008. Biomass estimation of Brazilian eucalypt plantations. Rev Arvore 32(4): 697-706. https://doi.org/10.1590/S0100-67622008000400011.

Tumuluru, J.S.; Sokhansanj, S; Wright, C.T.; Boardman, R.D. 2010. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development. Idaho National Laboratory Biofuels and Renewable Energy, Technologies Department Idaho Falls, EUA. https://inldigitallibrary.inl.gov/sites/sti/sti/4734111.pdf.

Van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. 2011. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass bioenerg 35: 3748-3762. https://doi.org/10.1016/j.biombioe.2011.06.023.

Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013.

Downloads

Published

2021-01-01 — Updated on 2020-11-15

Versions

How to Cite

Leonor Romão, E., & Ana Conte, R. (2020). Energy gains of eucalyptus by torrefaction process. Maderas-Cienc Tecnol, 23, 1–6. https://doi.org/10.4067/s0718-221x2021000100403 (Original work published January 1, 2021)

Issue

Section

Article