Evaluation of the properties of hybrid yellow poplar (Liriodendron sino-americanum): A comparison study with yellow poplar (Liriodendron tulipifera)
Keywords:
Hybrid yellow poplar, Liriodendron sino-americanum, Liriodendron tulipifera, yellow poplar, wood propertiesAbstract
As one of fast-growth wood species, hybrid yellow poplar (YP-h, Liriodendron sino-americanum) has been extensively planted throughout of China, however, little is known about its properties and applicability in structural and nonstructural applications such as construction and furniture. The aim of this study was to evaluate the properties of YP-h and examine its differences with yellow poplar (YP, Liriodendron tulipifera). The average vessel diameter of YP-h (55 μm) was 19 % lower than YP (68 μm), but, the density of YP-h was 37 % higher than YP and the dimensional change in YP-h was higher than YP. Comparable tensile strength and flexural modulus were found in YP-h and YP, however, the flexural, shear, and impact strength of YP-h was 35 %, 40 %, and 55 % higher than those of YP, respectively. The drilling, mortising, and turning processability of YP-h were superior to those of YP. Compared to the gluing and coating performance of YP, YP-h had inferior gluing properties and equivalent coating performance. Therefore, hybrid yellow poplar can be an ideal candidate for yellow poplar to be utilized in construction and furniture.
Downloads
References
Ajuziogu, G.C.; Onyeke, C.C.; Ojua, E.O.; Amujiri, A.N.; Ibeawuchi, C.C. 2019. Effect of growth ring width and fiber dimensions on the compressive strength of some members of the Moraceae family. Wood Fiber Sci 51(4): 416-423. https://doi.org/10.22382/wfs-2019-039
Bekhta, P.; Krystofiak, T.; Proszyk, S.; Lis, B. 2018. Surface gloss of lacquered medium density fibreboard panels veneered with thermally compressed birch wood. Prog Org Coat 117: 10-19. https://doi.org/10.1016/j.porgcoat.2017.12.020
Burgert, I.; Fruhmann, K.; Keckes, J.; Fratzl, P.; Stanzl-Tschegg, S. 2005. Properties of chemically and mechanically isolated fibres of spruce (Picea abies L. Karst.). Part 2: Twisting phenomena. Holzforschung 59(2): 247-251. https://doi.org/10.1515/hf.2005.039
Celen, I.; Harper, D.; Labbe, N. 2008. A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy. Holzforschung 62(2): 189-196. https://doi.org/10.1515/hf.2008.048
Chen, C.; Chen, J.; Zhang, S.; Cao, J.; Wang, W. 2020a. Forming textured hydrophobic surface coatings via mixed wax emulsion impregnation and drying of poplar wood. Wood Sci Technol 54(2): 421-439. https://doi.org/10.1007/s00226-020-01156-7
Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S. J.; Hu, L. 2020b. Structure-property-function relationships of natural and engineered wood. Nat Rew Mater https://doi.org/10.1038/s41578-020-0195-z
Chivavibul, P.; Watanabe, M.; Kuroda, S.; Komatsu, M. 2008. Evaluation of HVOF-sprayed WC-Co coatings for wood machining. Surf Coat Tech 202(21): 5127-5135. https://doi.org/10.1016/j.surfcoat.2008.05.024
Chowdhury, S.; Frazier, C.E. 2013. Compressive-torsion DMA of yellow-poplar wood in organic media. Holzforschung 67(2): 161-168. https://doi.org/10.1515/hf-2011-0167
Dai, J.L.; Vendrame, W.A.; Merkle, S.A. 2004. Enhancing the productivity of hybrid yellow-poplar and hybrid sweetgum embryogenic cultures. In Vitro Cell Dev-pl 40(4): 376-383. https://doi.org/10.1079/ivp2004538
Dai, L.M.; Li, S.L.; Zhou, W.M.; Qi, L.; Zhou, L.; Wei, Y.W.; Li, J.Q.; Shao, G. F.; Yu, D.P. 2018. Opportunities and challenges for the protection and ecological functions promotion of natural forests in China. Forest Ecol Manag 410: 187-192. https://doi.org/10.1016/j.foreco.2017.09.044
Deklerck, V.; De Mil, T.; Kondjo, P.; Beeckman, H.; Van Acker, J.; Van den Bulcke, J. 2019. Sleeping beauties in materials science: unlocking the value of xylarium specimens in the search for timbers of the future. Holzforschung 73(10): 889-897. https://doi.org/10.1515/hf-2018-0269
Feng, X.H.; Wu, Z.H.; Sang, R.J.; Wang, F.; Zhu, Y.Y.; Wu, M.J. 2019. Surface design of wood-based board to imitate wood texture using 3D printing technology. Bioresources 14(4): 8196-8211. https://doi.org/10.15376/biores.14.4.8196-8211
Flores, E.I.S.; Saavedra, K.; Hinojosa, J.; Chandra, Y.; Das, R. 2016. Multi-scale modelling of rolling shear failure in cross-laminated timber structures by homogenisation and cohesive zone models. Int J Solids Struct 81: 219-232. https://doi.org/10.1016/j.ijsolstr.2015.11.027
Fu, Q.L.; Ansari, F.; Zhou, Q.; Berglund, L.A. 2018. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. Acs Nano 12(3): 2222-2230. https://doi.org/10.1021/acsnano.8b00005
Gulsoy, S.K.; Hafizoglu, H.; Pekgozlu, A.K.; Tumen, I.; Donmez, I.E.; Sivrikaya, H. 2017. Fiber properties of axis and scale of eleven different coniferous cones. Ind Crop Prod 109: 45-52. https://doi.org/10.1016/j.indcrop.2017.07.044
Hiraiwa, T.; Aiso, H.; Ishiguri, F.; Takashima, Y.; Iizuka, K.; Yokota, S. 2014. Anatomy and chemical composition of Liriodendron Tulipifera stems inclined at different angles. IAWA J 35(4): 463-475. https://doi.org/10.1163/22941932-00000078
Huang, X. 2006. Study on the processing and utilization of the hybrid tulip wood. MA.Sc. Thesis, Nanjing Forestry University. Nanjing, China. http://cdmd.cnki.com.cn/article/cdmd-10298-2006110059.htm.
Jennings, J.D.; Zink-Sharp, A.; Frazier, C.E.; Kamke, F.A. 2006. Properties of compression-densitied wood, Part II: Surface energy. J Adhes Sci Technol 20(4): 335-344. https://doi.org/10.1163/156856106776381802
Jin, Y.C.; Xu, Y.; Wu, Q.B.; Pan, H.X. 2006. Kraft pulping properties of hybrid tulip tree (L chinense x L tulipifera). In Research Progress in Pulping and Papermaking. Beihai H, Shiya F, Fangeng C (eds), South China Univ Technology Press, Guangzhou, PRC. pp 191-194.
Kim, J.E.; Lee, J.W. 2019. Microstructural changes in the cell wall and enzyme adsorption properties of lignocellulosic biomass subjected to thermochemical pretreatment. Cellulose 26(2): 1111-1124. https://doi.org/10.1007/s10570-018-2116-5
Kim, T.S.; Kim, J.Y.; Kim, K.H.; Lee, S.; Choi, D.; Choi, I.G.; Choi, J.W. 2012a. The effect of storage duration on bio-oil properties. J Anal Appl Pyrol 95: 118-125. https://doi.org/10.1016/j.jaap.2012.01.015
Kim, Y.H.; Lee, S.M.; Lee, H.W.; Lee, J.W. 2012b. Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresource Technol 116: 120-125. https://doi.org/10.1016/j.biortech.2012.04.033
Li, T.; Chen, J.; Qiu, S.; Zhang, Y.; Wang, P.; Yang, L.; Lu, Y.; Shi, J. 2012. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. Plos One 7(8): e43451. https://doi.org/10.1371/journal.pone.0043451
Liu, Y.H.; Lee, A.W.C. 2003. Selected properties of parallel strand lumber made from southern pine and yellow-poplar. Holzforschung 57(2): 207-212. https://doi.org/10.1515/hf.2003.030
Lykidis, C.; Nikolakakos, M.; Sakellariou, E.; Birbilis, D. 2016. Assessment of a modification to the Brinell method for determining solid wood hardness. Mater Struct 49(3): 961-967. https://doi.org/10.1617/s11527-015-0551-4
Missanjo, E.; Matsumura, J. 2016. Wood density and mechanical properties of Pinus kesiya Royle ex Gordon in Malawi. Forests 7(7): 135. https://doi.org/10.3390/f7070135
Na, B.I.; Ahn, B.J.; Lee, J.W. 2015. Changes in chemical and physical properties of yellow poplar (Liriodendron tulipifera) during torrefaction. Wood Sci Technol 49(2): 257-272. https://doi.org/10.1007/s00226-014-0697-1
National Forestry and Grassland Administration. 2012. LY/T 2054: Methods for evaluation machining properties of lumber. NFGA. Beijing, China. http://hbba.sacinfo.org.cn/stdDetail/a736d3d33ddee00ec36bece98e15028e
National Forestry and Grassland Administration. 2016. LY/T 2720: Test method for wood failure percentage in adhesive bonded joints. NFGA. Beijing, China. http://hbba.sacinfo.org.cn/stdDetail/3ad0493281cc7a5da37348c9bc4452dc
Nguyen, D.M.; Grillet, A.C.; Bui, Q.B.; Diep, T.M.H.; Woloszyn, M. 2018. Building bio-insulation materials based on bamboo powder and bio-binders. Constr Build Mater 186: 686-698. https://doi.org/10.1016/j.conbuildmat.2018.07.153
Salca, E.A.; Hiziroglu, S. 2014. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Mater Des 62: 416-423. https://doi.org/10.1016/j.matdes.2014.05.029
Shang, C.; Wang, Z. 2012. A new scientific name of hybrid Liriodendron-L. sino-americanum. J Nanjing Forest Univ-Sci (Natural Science Edition) 36(02): 1-2. https://doi.org/10.3969/j.jssn.1000-2006.2012.02.001
Shukla, S.R.; Kamdem, D.P. 2009. Properties of laboratory made yellow poplar (Liriodendron tulipifera) laminated veneer lumber: effect of the adhesives. Eur J Wood Prod 67(4): 397-405. https://doi.org/10.1007/s00107-009-0333-1
Slabejova, G.; Smidriakova, M.; Panis, D. 2018. Quality of Silicone Coating on the Veneer Surfaces. Bioresources 13(1): 776-788. https://doi.org/10.15376/biores.13.1.776-788
Standardization Administration of the People's Republic of China. 2009. GB/T 1932: Method for determination of the shrinkage of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=543164D73BF1907C5BD71B246E009A2C
Standardization Administration of the People's Republic of China. 2009. GB/T 1933: Method for determination of the density of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=D3D2D1038E1A15D0A2C08A833AA69CBE
Standardization Administration of the People's Republic of China. 2009. GB/T 1934.1: Method for determination of the water absorption of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=C3E8C9F67AF4B6F0312031205CDB67C1
Standardization Administration of the People's Republic of China. 2009. GB/T 1934.2: Method for determination of the swelling of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=832DF7CC11E5117AF0CF625356BCF587
Standardization Administration of the People's Republic of China. 2009. GB/T 1935: Method of testing in compressive strength parallel to grain of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=34089CCF6424D8196946DBA6931F824C
Standardization Administration of the People's Republic of China. 2009. GB/T 1936.1: Method of testing in bending strength of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=F9DE6B9DC23FE5CE037D6A6458027F9A
Standardization Administration of the People's Republic of China. 2009. GB/T 1936.2: Method for determination of the modulus of elasticity in static bending of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=E9F9CF12B8898BF7958E7514442807D4
Standardization Administration of the People's Republic of China. 2009. GB/T 1937: Method of testing in shearing strength parallel to grain of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=A3E3242102355B42E4CE0B998CF309C7
Standardization Administration of the People's Republic of China. 2009. GB/T 1938: Method of testing in tensile strength parallel to grain of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=54E3BE25A14818C5427ADAF48499360C
Standardization Administration of the People's Republic of China. 2009. GB/T 1939: Method of testing in compression perpendicular to grain of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=6B54A020E1951DF1A57EC2FA09154E1D
Standardization Administration of the People's Republic of China. 2009. GB/T 1940: Method of testing in toughness of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=64EA96DAC191732D75C19AD2AF849528
Standardization Administration of the People's Republic of China. 2009. GB/T 1941: Method of testing in hardness of wood. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=AABA7A552DBD6D91817E79D3F4CEE3C2
Standardization Administration of the People's Republic of China. 2019. GB/T 37315: Basic requirements of bond performance of adhesives of timber structures. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=0F0B497453D535DBA47EFFBDE070719F
Standardization Administration of the People's Republic of China. 2013. GB/T 4893.1: Furniture-Assessment of surface resistance to cold liquids. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=403BF75B5FD946F58973FFE48B5A8303
Standardization Administration of the People's Republic of China. 2013. GB/T 4893.2: Furniture-Assessment of surface resistance to wet heat. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=B79E7481D06A3A63F583A4E11A5BC4E2
Standardization Administration of the People's Republic of China. 2013. GB/T 4893.3: Furniture-Assessment of surface to dry heat. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=24D95E9A0F2E48DECDEB842733C823C7
Standardization Administration of the People's Republic of China. 2013. GB/T 4893.4: Test of surface coatings of furniture - Part 4:Determination of adhesion - Cross cut. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=87CA490E1DEAE20B420CB3AB3C21665E
Standardization Administration of the People's Republic of China. 2013. GB/T 4893.6: Test of surface coatings of furniture - Part 6:Determination of gloss value. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=B9A50805C3ED3375AB000A34FFDF5020
Standardization Administration of the People's Republic of China. 2013. GB/T 4893.8: Test of surface coatings of furniture - Part 8:Determination of wearability. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=EB4C87D6CDAFEB5C7ABF7B9A2FD5B7F3
Standardization Administration of the People's Republic of China. 2013. GB/T 4893.9: Test of surface coatings of furniture - Part 9:Determination of resistance to impact. SAC. Beijing, China. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=FDB430DFB80C0E8DC82D3013F8CF585A
Ulker, O.; Aslanova, F.; Hiziroglu, S. 2018. Properties of thermally treated yellow poplar, southern pine, and eastern redcedar. Bioresources 13(4): 7726-7737. https://doi.org/10.15376/biores.13.4.7726-7737
Wang, X.; Chen, H.; Feng, X.; Zhang, Q.; Labbe, N.; Kim, K.; Huang, J.; Ragauskas, A. J.; Wang, S.; Zhang, Y. 2020. Isolation and characterization of lignocellulosic nanofibers from four kinds of organosolv-fractionated lignocellulosic materials. Wood Sci Technol 54(3): 503-517. https://doi.org/10.1007/s00226-020-01167-4
Wang, Z. 2005. Utilization and species hybridization in Liriodendron. Chinese Forestry Press, Beijing.
Xiao, Y.; Wu, Y.; Li, J.; Yang, R.Z. 2017. An experimental study on shear strength of glubam. Constr Build Mater 150: 490-500. https://doi.org/10.1016/j.conbuildmat.2017.06.005
Xu, C. 2004. Study on the wood properties of the hybrid tulip tree. MA.Sc. Thesis, Nanjing Forestry Univeristy. Nanjing, China. http://cdmd.cnki.com.cn/article/cdmd-10298-2004092233.htm.
Xu, M.; Sun, Y.; Li, H. 2010. EST-SSRs development and paternity analysis for Liriodendron spp. New Forest 40(3): 361-382. https://doi.org/10.1007/s11056-010-9205-0
Ye, H. 2009. Peizhong Ye. Chinese Forestry Press, Beijing. China.
Ye, J.; Wang, Z. 2002. Genetic analysis of heterosis for hybrid tulip tree. Scientia Silvae Sinicae 38(04): 67-71. https://doi.org/10.11707/j.1001-7488.20020411
Zhong, Y.D.; Yang, A.H.; Liu, S.J.; Liu, L.P.; Li, Y.Q.; Wu, Z.X.; Yu, F.X. 2019. RAD-Seq data point to a distinct split in Liriodendron (Magnoliaceae) and obvious east-west genetic divergence in L. chinense. Forests 10(1): 13. https://doi.org/10.3390/f10010013
Zink-Sharp, A.; Price, C. 2006. Intra-ring compression strength of low density hardwoods. Maderas-Cienc Tecnol 8(2): 117-126. https://doi.org/10.4067/s0718-221x2006000200005
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.