Elastic constants of chilean Pinus radiata using ultrasound

Authors

  • Erik Baradit
  • Cecilia Fuentealba
  • Miguel Yáñez

Keywords:

Elastic constant, nondestructive evaluation, Pinus radiata, Poisson’s ratio, shear rate, ultrasound

Abstract

Elastic constants of Pinus radiata were determined using ultrasound technique. In parallel, typical compression mechanical testing was carried out to compare the effectiveness of the nondestructive test using ultrasound technique. The longitudinal elastic constant values were similar to the mechanical testing (ultrasound technique was 12,8 % higher than mechanical testing), showing that ultrasound technique is a reliable and valid tool. The values for radial and tangential moduli obtained by ultrasound technique versus mechanical testing showed more differences. This may be due to the difficulty in obtaining adequate samples for mechanical testing. The symmetry of the shear modulus was revealed by ultrasound technique (Gij = Gji). Poisson’s ratios were not comparable using either method; however, values obtained by ultrasound technique were more consistent with the existing literature for Pinus species. Additionally, the elastic anisotropy of the analyzed wood samples was demonstrated through ultrasound velocity propagation in the material. It was thus possible to obtain the twelve engineering constants that characterize the mechanical behavior of wood by means of the proposed ultrasound technique.

Downloads

Download data is not yet available.

References

Baradit, E.; Niemz, P. 2012. Elastic constants of some Chilean wood Species: tepa, olivillo, laurel, lenga, alerce and mañío using ultrasound techniques. Wood Research 57(3): 497-504. http://www.woodresearch.sk/wr/201203/16.pdf

Bodig, J.; Jayne, B.A. 1993. Mechanics of wood and wood Composites. Krieger Publishing Company, Melbourne, FL, USA.

Bucur, V. 2006. Acoustics of wood. Springer-Verlag, Berlin Heildelberg, Germany.

Bucur, V. 1983. An ultrasonic method for measuring the elastic constants of wood increment cores bored from living trees. Ultrasonics 21(3): 116-126. https://doi,org/10,1016/0041-624X(83)90031-8

Crespo, J.; Aira J.; Vazquez, C.; Guaita, M. 2017. Comparative analysis of the elastic constants measured via conventional, ultrasound and 3-D Digital image correlation methods in Eucalyptus globulus Labill. BioResources 12(2): 3728-3743. https://bioresources.cnr.ncsu.edu/resources/comparative-analysis-of-the-elastic-constants-measured-via-conventional-ultrasound-and-3-d-digital-image-correlation-methods-in-eucalyptus-globulus/

De Borst, K.; Jenkel, C.; Montero, C.; Colmars, J.; Grill, J.; Kalisle, M.; Eberhardsteiner, J. 2013. Mechanical characterization of wood: An integrative approach ranging from nanoscale to structure. Comput Struct 127: 53-67. https://doi.org/10.1016/j.compstruc.2012.11.019

Efron, B. 1979. Bootstrap methods: another look at the Jackknife. Ann Stat 7(1): 1-26. https://www.jstor.org/stable/2958830

Efron, B.; Tibshirani, R. 1993. An introduction to the bootstrap, Chapman & Hall/CRC, Boca Raton, FL, USA.

Espinosa, L.; Brancheriau, L.; Prieto F.; Lasaygue P. 2018. Sensitivity of ultrasonic wave velocity estimation using the Christoffel equation for wood non-destructive characterization. BioResources 13(1): 918-928. https://bioresources.cnr.ncsu.edu/resources/sensitivity-of-ultrasonic-wave-velocity-estimation-using-the-christoffel-equation-for-wood-non-destructive-characterization/

Forest Products Laboratory. 2010. Wood handbook—Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, USA. 508 p. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf

Gindl, W.; Gupta, H.S.; Schöberl, T.; Lichtenegger, H.C.; Fratzl, P. 2004. Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A-Mater 79(8): 2069-2073. https://doi.org/10.1007/s00339-004-2864-y

Gonçalves, R.; Trinca, A.J.; Pellegrino, D.G. 2011. Comparison of elastic constants of wood determined by ultrasonic wave propagation and static compression testing. Wood Fiber Sci 43(1): 64-75. https://wfs.swst.org/index.php/wfs/article/view/1247

Gonçalves, R.; Trinca, A.J.; Pellis, B.P. 2014. Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Sci Technol 48(2): 269-287. https://doi.org/10.1007/s00226-013-0598-8

Instituto forestal. 2018a. Anuario Forestal N°163. INFOR. Chile. http://biblioteca.infor.cl/DataFiles/33219.pdf.

Instituto forestal. 2018b. Estadisticas forestales. INFOR. Chile. https://wef.infor.cl/publicaciones/publicaciones.php

INN. 1984. Madera: parte 1: determinación de humedad. Instituto nacional de normalización. Chile.

INN. 1988. Madera: parte 2: determinación de la densidad. Instituto nacional de normalización. Chile.

INN. 1986a. Madera: determinación de las propiedades mecánicas: ensayo de compresión paralela. Instituto nacional de normalización. Chile.

INN. 1986b. Madera: determinación de las propiedades mecánicas: ensayo de compresión perpendicular a las fibras. Instituto nacional de normalización. Chile.

Kennedy, R.W. 1968. Wood in transverse compression: Influence of some anatomical variables and density on behavior. Forest Prod J 18: 36-40.

Keunecke, D.; Sonderegger, W.; Pereteanu, K.; Niemz, P.; Luthi, T. 2007. Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41: 309-327. https://doi.org/10.1007/s00226-006-0107-4

Konnerth, J.; Buksnowitz, C.; Gindl, W.; Hofstetter, K.; Jager, A. 2010. Full set of elastic constants of spruce wood cell walls determined by nanoindentation. In Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee.

October 11-14, 2010, Geneva, Switzerland. http://www.swst.org/wp/meetings/AM10/pdfs/NT-2%20konnerth%20paper.pdf.

Kollmann, F.; Coté, W. 1968. Principles of Wood Science and Technology. I Solid Wood. Springer-Verlag.

Kotlínová, M.; Horacek, P. 2010. Directions dynamic moduli of elasticity with transformations into anatomical. Wood Research 55(1): 11-20. http://www.woodresearch.sk/wr/201001/02.pdf

Majano-Majano, A.; Fernandez-Cabo, J.L.; Hoheisel, S.; Klein, M. 2012. A Test Method for Characterizing Clear Wood Using a Single Specimen. Exp Mech 52: 1079-1096. https://doi.org/10.1007/s11340-011-9560-6

Niemz, P.; Aguilera, A. 1995. Untersuchungen zur Schallausbreitungsgeschwindigkeit für ausgewählte Holzarten Chiles. Holz Roh Werkst 53(3): 187-191.

Liu, J.Y.; Ross, R.J. 2005. Relationship between radial compressive modulus of elasticity and shear modulus of wood. Wood Fiber Sci 37(2): 201-206. https://www.fs.usda.gov/treesearch/pubs/20211

Perré, P.; Badel, E. 2003. Predicting of oak wood properties using X-ray inspection: representation, homogenisation and localization. Part II: Computation of macroscopic properties and microscopic stress fields. Ann Forest Sci 60(3): 247-257. https://doi.org/10.1051/forest:2003016

Royer, D.; Dieulesaint, E. 2000. Elastic Waves in Solids I. Springer-Verlag, Berlin, Germany.

Sonderegger, W.; Keunecke, D.; Baradit, E.; Niemz, P. 2010. Selected physical and mechanical properties of the Chilean wood species roble, lingue, mañio and alerce. Wood Mater Sci Eng 5(1): 53-59. https://doi.org/10.1080/17480271003717279

Downloads

Published

2021-01-01

How to Cite

Baradit, E. ., Fuentealba, C. ., & Yáñez, M. . (2021). Elastic constants of chilean Pinus radiata using ultrasound. Maderas. Ciencia Y Tecnología, 23, 1–10. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4587

Issue

Section

Article