Juvenile-mature wood evaluation along the bole considering the influence of silvicultural treatments


  • Antonio Ruano
  • Eva Hermoso


Juvenile wood, Pinus sylvestris, Pinus nigra, silvicultural treatments, wood quality


Wood use for structural purposes has increased in the last decade in Spain. However, as a raw material, wood needs to comply with requirements that are not always present. Knowledge about the wood quality from the trees on the stand is essential for providing feedback to forest managers and for taking the required actions to obtain suitable silviculture treatments. Two of the main wood species used in construction in Spain, Pinus nigra and Pinus sylvestris, have been studied in order to determine the amount of juvenile wood, which has been identified as a harmful characteristic for its decrease in quality of the physical-mechanical properties of these species. Being relevant for the best quality of timber in the part along the bole where the logs are obtained, the distribution of juvenile wood at different heights and the effect of several silvicultural treatments have had on juvenile wood formation has been considered. The juvenile-mature wood boundary (transition year) was calculated through segmented linear mixed models employing as variables annual latewood density, obtained through micro X-ray densitometry, silvicultural practices, and a drought index. The results show how juvenile and mature wood is distributed along the bole and the proportion of juvenile wood. Its reduction according to the different thinning and pruning silvicultural practices is presented.


Download data is not yet available.


AEMET 2017. Climatic data provided by the State Meteorological Agency (AEMET), Ministry of Agriculture, Food and Environment, Spain. http://www.aemet.es/

Auty, D.; Achim, A.; Macdonald, E.; Cameron, A.D.; Gardiner, B.A. 2014. Models for predicting wood density variation in Scots pine. Forestry 87(3): 449-458. https://doi.org/10.1093/forestry/cpu005

Amateis, R.; Burkhart, H. 2011. Growth of young loblolly pine trees following pruning. For Ecol Manag. 262: 2338-2343. https://doi.org/10.1016/j.foreco.2011.08.029

Arzac, A.; Rozas, V.; Rozenberg, P.; Olano, J.M. 2018. Water availability controls Pinus pinaster xylem growth and density: A multi-proxy approach along its environmental range. Agric For Meteorol 250–251: 171–180. https://doi.org/10.1016/j.agrformet.2017.12.257

Barbour, R.J.; Fayle, D.C.F.; Chauret, G.; Cook, J.; Karsh, M.B.; Ran, S. 1994. Breast-height relative density and radial growth in mature jack pine (Pinus banksiana) for 38 years after thinning. Can J For Res 24(12): 2439-2447. https://doi.org/10.1139/x94-315

Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10): 3001-3023. https://doi.org/10.1002/joc.3887

Burdon, R.D.; Britton, R.A.J.; Walford, G.B. 2001. Wood stiffness and bending strength in relation to density in four native provenances of Pinus radiata. N Z J For Sci 31(1): 130–146.


Burdon, R.D.; Kibblewhite, R.P.; Walker, J.C.F.; Mcgraw, R.A.; Evans, R.; Cown, D.J. 2004. Juvenile versus mature wood: A new concept, orthogonal to corewood versus outerwood, with special reference to Pinus radiata and Pinus taeda. For Sci 50(4): 399-415. https://doi.org/10.1093/forestscience/50.4.399

Burkhart, H.; Amateis, R. 2020. Effects of early pruning on ring specific gravity in young loblolly pine trees. Wood Fiber Sci 52(2): 139-151. https://doi.org/10.22382/wfs-2020-013

De Cáceres, M.; Martin-StPaul, N.; Turco, M.; Cabon, A.; Granda, V. 2018. Estimating daily meteorological data and downscaling climate models over landscapes. ‎Environ Model Softw 108: 186-196. https://doi.org/10.1016/j.envsoft.2018.08.003

Dobner, M.; Huss, J.; Tomazello Filho, M. 2018. Wood density of loblolly pine trees as affected by crown thinnings and harvest age in southern Brazil. Wood Sci Technol 52:465–485. https://doi.org/10.1007/s00226-017-0983-9

Dowse, G.P.; Wessels, C.B. 2013. The structural grading of young South African grown Pinus patula sawn timber. South For J For Sci 75(1): 7-17. https://doi.org/10.2989/20702620.2012.743768

Erasmus, J.; Kunneke, A.; Drew, D.M.; Wessels, C.B. 2018. The effect of planting spacing on Pinus patula stem straightness, microfibril angle and wood density. Forestry 91(3): 247-258. https://doi.org/10.1093/forestry/cpy005

Gapare, W.J.; Wu, H.X.; Abarquez, A. 2006. Genetic control of the time of transition from juvenile to mature wood in Pinus radiata D. Don. Ann For Sci 63(8): 871-878. https://doi.org/10.1051/forest:2006070

Hermoso, E.; Mateo, R.; Íñiguez-González, G.; Montón, J.; Arriaga, F. 2016. Visual Grading and Structural properties assessment of large cross-section Pinus radiata D. Don. Timber BioRes 11 (2): 5312-5321. https://doi.org/10.15376/biores.11.2.5312-5321

Larson, P.R. 1969. Wood formation and the concept of wood quality. New Haven, CT: Yale University, School of Forestry, Bulletin no. 74: 54. https://www.fs.usda.gov/treesearch/pubs/49814

Larson, P.R.; Kretschmann, D.E.; Clark, A.I.; Isebrands, J.G. 2001. Formation and properties of juvenile wood in southern pines: a synopsis. Gen Tech Rep FPL-GTR-129. USDA For Serv Forest Prod Lab, Madison, WI. 42. https://doi.org/10.2737/FPL-GTR-129

Lachenbruch, B.; Moore, J.R.; Evans, R. 2011. Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer, F.C.,

Lachenbruch, B.; Dawson, T.E. (eds) Size- and Age-Related Changes in Tree Structure and Function. Tree Physiol, Springer, Dordrecht, 4:121-164. https://doi.org/10.1007/978-94-007-1242-3_5

Mäkinen, H.; Hynynen, J. 2012. Predicting wood and tracheid properties of Scots pine. For Ecol Manage 279: 11-20. https://doi.org/10.1016/j.foreco.2012.05.024

Mazet, J.F.; Nepveu, G.; Velling, P.; Deret-Varcin, E. 1990. Etude des effets de quelques paramètres sylvicoles et environnementaux sur la densité du bois de l’Epicéa commun, du Sapin pectiné et du Pin sylvestre dans le Nord-Est de la France. Actes du Troisième Colloque Sciences et Industries du Bois, ARBORA Bordeaux, 537–546.

Moore, J.R.; Cown, D.J.; McKinley, R.B.; Sabatia, C.O. 2015. Effects of stand density and seedlot on three wood properties of young radiata pine grown at a dry-land site in New Zeland. N Z J For Sci 45(1): 4. https://doi.org/10.1186/s40490-015-0035-x

Mörling, T. 2002. Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine. Ann For Sci 59(1): 29-40. https://doi.org/10.1051/forest:2001003

Moreno, D.; Sánchez, M.; Álvarez, J.; Hevia, A.; Majada, J.; Cañellas, I.; Gea, G. 2014. Response to the interaction of thinning and pruning of pine species in Mediterranean mountains. Eur J Forest Res 133: 833-843. https://doi.org/10.1007/s10342-014-0800-z

Muggeo, V.M. 2008. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R News 8/1: 20-25. https://cran.r-project.org/doc/Rnews/

Muggeo, V.M.; Atkins, D.C.; Gallop, R.J.; Dimidjian, S. 2014. Segmented mixed models with random changepoints: a maximum likelihood approach with application to treatment for depression study. Stat Model 14(4): 293-313. https://doi.org/10.1177/1471082X13504721

Muggeo, V.M. 2017. Interval estimation for the breakpoint in segmented regression: a smoothed score-based approach. Aust NZ J Stat 59(3): 311-322. https://doi.org/10.1111/anzs.12200

Peltola, H.; Kilpeläinen, A.; Sauvala, K.; Räisänen, T.; Ikonen, V-P. 2007. Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fenn 41(3): 285. https://doi.org/10.14214/sf.285

Pape, R. 1999. Influence of Thinning and Tree Diameter Class on the Development of Basic Density and Annual Ring Width in Picea abies. Scand J For Res 14(1): 27-37. https://doi.org/10.1080/02827589908540806

Paul, B.H. 1958. Specific gravity changes in southern pines after release, South. Lumberman 197(2465): 122–124.

R Core Team 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

Rais, A.; Poschenrieder, W.; Pretzsch, H.; Van De Kuilen, J.W.G. 2014. Influence of initial plant density on sawn timber properties for Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann For Sci 71(5): 617–626. https://doi.org/10.1007/s13595-014-0362-8

Rodríguez, E.; Ortega, M. 2006. Tendencias radiales de la densidad y sus componentes en Pinus nigra Arn. de la Península Ibérica. Forest Sys 15(1):120–133. http://www.inia.es/gcontrec/pub/RODRIGUEZ-ORTEGA_1144740778140.pdf

Ruano, A.; Ruiz-Peinado, R.; Fernández-Golfín, J.; Hermoso, E. 2019. Height growth for assessing core-outer wood transition on Pinus sylvestris and Pinus nigra Spanish stands. Eur J For Res 1-6. https://doi.org/10.1007/s10342-019-01231-0

Sauter, U.H.; Mutz, R.; Munro, B.D. 1999. Determining juvenile-mature wood transition in Scots pine using latewood density. Wood Fiber Sci 31(4): 416-425. https://wfs.swst.org/index.php/wfs/article/view/2139/2139

Tsoumis, G.T. 2009. Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold, New York, EEUU. https://www.trae.dk/wp-content/uploads/2001/10/science-and-technology-of-wood.pdf

Ulvcrona, T.; Ahnlund, U.K. 2011. The effects of pre-commercial thinning and fertilization on characteristics of juvenile clearwood of Scots pine (Pinus sylvestris L.). Forestry 84(3): 207-219. https://doi.org/10.1093/forestry/cpr007

Vincent, M.; Krause, C.; Koubaa, A. 2011. Variation in black spruce (Picea mariana (Mill.) BSP) wood quality after thinning. Ann For Sci 68(6): 1115-1125. https://doi.org/10.1007/s13595-011-0127-6

Wessels, C.B.; Malan, F.S.; Nel, D.G.; Rypstra, T. 2014. Variation in strength, stiffness and related wood properties in young South African-grown Pinus patula. South For J For Sci 76(1): 37-46. https://doi.org/10.2989/20702620.2013.870406




How to Cite

Ruano, A. ., & Hermoso, E. . (2021). Juvenile-mature wood evaluation along the bole considering the influence of silvicultural treatments. Maderas-Cienc Tecnol, 23, 1–10. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4588