Evaluation of Eucalyptus woodchip utilization as fuel for thermal power plants
Keywords:
Eucalyptus biomass, energy properties, power generation, renewable fuel, woodchipAbstract
This paper aims to evaluate the implications of Eucalyptus woodchip utilization as an alternative solid fuel for thermal power plants, highlighting its energy properties, power generation expenses and unit variable costs. Woodchip samples were collected from different sources and a proximate analysis was carried out in order to determine their moisture content, basic and bulk densities, ash content and higher heating value. Then, with these properties, empirical indices of a 10-megawatt thermal power plant were used to simulate the potential woodchip consumption, the forest area needed and the unit variable cost (US$·MWh−1) for each sample. The results indicate that woodchip samples with lower moisture content and improved higher heating value presented: reduced woodchip consumption for the same power generation, decreased generation expenses, reduced unit variable costs and smaller Eucalyptus plantations area needed to supply the woodchip consumption. Greater energy density may result in lower transportation and storage expenses, however, does not indicate better generation performance, since it is influenced by biomass field conditions. All samples obtained satisfactory levels of ash content, which may result in lower emissions of pollutants and superior operational efficiency. Finally, all samples presented unit variable costs below the limit established by the government for participation in the regulated energy market, which might be an economic attraction for this kind of project. Therefore, Eucalyptus woodchip moisture content, higher heating value and energy density are key issues in sustainable thermal power generation, and should be managed by Eucalyptus power plants in order to reach better generation performance and reduced expenses.
Downloads
References
Almeida, G.; Brito, J.O.; Perré, P. 2010. Alterations in Energy Properties of Eucalyptus Wood and Bark Subjected to Torrefaction: The Potential of Mass Loss as a Synthetic Indicator. Bioresour Technol 101(24): 9778-9784. https://doi.org/10.1016/j.biortech.2010.07.026
Agência Nacional de Energia Elétrica. ANEEL. 2019. Capacidade de Geração do Brasil. ANEEL. Brasília, Brasil. http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm
Banco Central do Brasil. BCB. 2019. Taxas de câmbio. BCB. Brasília, Brasil. https://www.bcb.gov.br/en/#!/n/EXCHANGERATES
Buchmayr, M.; Gruber, J.; Hargassner, M.; Hochenauer, C. 2015. Experimental Investigation of the Primary Combustion Zone during Staged Combustion of Wood-Chips in a Commercial Small-Scale Boiler. Biomass Bioenerg 81: 356-363. https://doi.org/10.1016/j.biombioe.2015.07.016
C
arneiro, A.C.O.; Castro, A.F.N.M.; Castro, R.V.O.; Santos, R.C.; Ferreira, L.P.; Damásio, R.A.P.; Vital, B. R. 2014. Potential Energy of Eucalyptus Sp. Wood According to Age and Different Genetic Materials. Rev Árvore 38(2): 375-381. https://doi.org/10.1590/S0100-67622014000200019
Castro, A.F.N.M.; Castro, R.V.O.; Carneiro, A.C.O.; Santos, R.C.; Carvalho, A.M.M.L.; Trugilho, P.F.; Melo, I.C.N.A. 2016. Correlations Between Age, Wood Quality and Charcoal Quality of Eucalyptus Clones. Rev Árvore 40(3): 551-560. https://doi.org/10.1590/0100-67622016000300019
Câmara de Comercialização de Energia Elétrica. CCEE. 2019. Informações de Mercado Mensal - Contabilização de abril de 2019. CCEE. São Paulo, Brasil. https://www.ccee.org.br/portal/faces/pages_publico/o-que-fazemos/infomercado?showFlag=F&_afrLoop=895960388849199#!%40%40%3F_afrLoop%3D895960388849199%26showFlag%3DF%26_adf.ctrl-state%3D6cj9mtt5q_9
Centro de Gestão e Estudos Estratégicos. CGEE. 2015. Modernização da produção de carvão: Subsídios para revisão do plano siderurgia. CGEE. Brasília, Brasil. https://www.cgee.org.br/documents/10195/734063/Carvao_Vegetal_WEB_02102015_10225.PDF/a3cd6c7c-5b5b-450a-955b-2770e7d25f5c?version=1.3
CIFlorestas. 2018. Cotações. Centro de Inteligência em Florestas. Viçosa, Minas Gerais, Brasil. http://www.ciflorestas.com.br/cotacoes.php
De Oliveira Vilela, A.; Lora, E.S.; Quintero, Q.R.; Vicintin, R.A.; Souza, T.P.S. 2014. A New Technology for the Combined Production of Charcoal and Electricity through Cogeneration. Biomass Bioenerg 69: 222-240. https://doi.org/10.1016/j.biombioe.2014.06.019
Deboni, T.L.; Simioni, F.J.; Brand, M.A.; Lopes, G.P. 2019. Evolution of the Quality of Forest Biomass for Energy Generation in a Cogeneration Plant. Renew Energy 135: 1291-1302. https://doi.org/10.1016/j.renene.2018.09.039
Deutsches Institut Fur Normung. DIN. 2010a. EN 14774-2: Solid biofuels - Determination of moisture content - Oven dry method - Part 2: Total moisture - Simplified method. CEN. Berlin, Germany. 9 p.
Deutsches Institut Fur Normung. DIN. 2010b. EN 14918: Determination of calorific value. CEN. Berlin, Germany. 63 p.
Deutsches Institut Fur Normung. DIN. 2010c. EN 15103: Solid biofuels - Determination of bulk density. CEN. Berlin, Germany. 14 p.
Deutsches Institut Fur Normung. DIN. 2012. EN 14775: Solid biofuels - Determination of ash content. CEN. Berlin, Germany. 12 p.
Do, T.X.; Lim, Y. il; Yeo, H.; Lee, U. do; Choi, Y. tai; Song, J. hun; 2014. Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips. Energy 70: 547–560. https://doi.org/10.1016/j.energy.2014.04.048
ENERDATA. 2018. Global Energy Statistical Yearbook 2018. ENERDATA S.A. Grenoble, France. https://www.enerdata.net/publications/reports-presentations/2018-world-energy-trends-projections.html
Empresa de Pesquisa Energética. EPE. 2016. Energia Termelétrica: Gás Natural, Biomassa, Carvão, Nuclear. EPE. Rio de Janeiro, Brasil. http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-173/Energia%20Termel%C3%A9trica%20-%20Online%2013maio2016.pdf
Empresa de Pesquisa Energética. EPE. 2017. Leilão A-6 de 2017 - Preços de Referência dos Combustíveis para as Usinas Termelétricas. EPE. Rio de Janeiro, Brasil. http://epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-121/topico-281/EPE-DEE-IT-053_A-6_2017_r1.pdf
Empresa de Pesquisa Energética. EPE. 2018. Plano Decenal de Expansão de Energia 2027. EPE. Rio de Janeiro, Brasil. http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/Documents/PDE%202027_aprovado_OFICIAL.pdf
Fernández, R.G.; García, C.P.; Lavín, A.G.; Bueno, J.L. 2012a. Characterization of Spanish Biomass Wastes for Energy Use. Bioresour Technol 103(1): 249-258. https://doi.org/10.1016/j.biortech.2011.10.004
Fernández, R.G.; García, C.P.; Lavín, A.G.; De las Heras, J.L.B. 2012b. Study of Main Combustion Characteristics for Biomass Fuels Used in Boilers. Fuel Process Technol 103: 16-26. https://doi.org/10.1016/j.fuproc.2011.12.032
Instituto Acende Brasil. IAB. 2015. Avaliação do potencial de geração de eletricidade a partir de madeira no Brasil. IAB. São Paulo, Brasil. https://www.inputbrasil.org/wp-content/uploads/2017/08/Relatorio_Avaliacao-do-potencial-de-geracao-de-eletricidade-a-partir-da-madeira-no-Brasil.pdf
Indústria Brasileira de Árvores. IBÁ. 2020. Annual Report 2020 . IBÁ. São Paulo, Brasil. https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf
Instituto Brasileiro de Geografia e Estatística. IBGE 2017. Produção da Extração Vegetal e da Silvicultura - Área total existente em 31/12/2017 dos efetivos da silvicultura, por espécie florestal. IBGE. Brasília, Brasil. https://sidra.ibge.gov.br/pesquisa/pevs/tabelas
ICAVI. 2019. Indústria de Caldeiras Vale do Itajaí S/A. Pouso Redondo, Santa Catarina, Brasil. https://www.icavi.ind.br/en/home-en/
Ignacio, L.H.S.; Almeida Santos, P.E.; Duarte, C.A.R. 2019. An Experimental Assessment of Eucalyptus Urosemente Energy Potential for Biomass Production in Brazil. Renew Sust Energ Rev 103: 361-369. https://doi.org/10.1016/j.rser.2018.12.053
Lamas, W.Q.; Giacaglia, G.E.O. 2013. The Brazilian Energy Matrix: Evolution Analysis and Its Impact on Farming. Energ Policy 63: 321-327. https://doi.org/10.1016/j.enpol.2013.09.009
Lora, E.S.; Andrade, R.V. 2009. Biomass as Energy Source in Brazil. Renew Sust Energ Rev 13(4): 777-788. https://doi.org/10.1016/j.rser.2007.12.004
Magalhães, M.A.D.; Carneiro, A.D.C.O.; Vital, B.R.; Silva, C.M.S.D.; Souza, M.M.D.; Fialho, L.D.F. 2017. Estimates of Mass and Energy of Different Genetic Material Eucalyptus. Rev Árvore 41(3): e410302. https://doi.org/10.1590/1806-90882017000300002
Martinez, C.L.M.; Sermyagina, E.; Carneiro, A.D.C.O.; Vakkilainen, E.; Cardoso, M. 2019. Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass Bioenergy 12: 70-77. https://doi.org/10.1016/j.biombioe.2019.02.013
Miranda, M.A.D.S.; Ribeiro, G.B.D.D.; Valverde, S.R.; Isbaex, C. 2017. Eucalyptus Sp. Woodchip Potential for Industrial Thermal Energy Production. Rev Árvore 41(6): e410604. https://doi.org/10.1590/1806-90882017000600004
Morato, M.M.; Costa Mendes, P.R.; Cani, A.A.; Normey-Rico, J.E.; Bordons, C. 2018. Electrical Power and Energy Systems Future Hybrid Local Energy Generation Paradigm for the Brazilian Sugarcane Industry Scenario. Int j Elec Power 101: 139-150. https://doi.org/10.1016/j.ijepes.2018.03.024
Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; Catalão, J.P.S. 2019. Evaluation of the Utilization of Woodchips as Fuel for Industrial Boilers. J Clean Prod 223: 270-277. https://doi.org/10.1016/j.jclepro.2019.03.165
Nzotcha, U.; Kenfack, J. 2019. Contribution of the Wood-Processing Industry for Sustainable Power Generation: Viability of Biomass-Fuelled Cogeneration in Sub-Saharan Africa. Biomass Bioenerg 120: 324-331. https://doi.org/10.1016/j.biombioe.2018.11.015
Saidur, R.; Abdelaziz, E. A.; Demirbas, A.; Hossain, M. S.; Mekhilef, S. 2011. A Review on Biomass as a Fuel for Boilers. Renew Sust Energ Rev 15(5): 2262-2289. https://doi.org/10.1016/j.rser.2011.02.015
Statsoft, I.N.C. 2007. Statistica data analysis software system - version 8.0. Tulsa, USA.
Stoppato, A. 2012. Energetic and Economic Investigation of the Operation Management of an Organic Rankine Cycle Cogeneration Plant. Energy 41(1): 3-9. https://doi.org/10.1016/j.energy.2011.09.033
Vital, B.R. 1984. Boletim técnico nº 1 - Métodos de determinação de densidade da madeira. Sociedade de Investigações Florestais, Viçosa, Minas Gerais, Brasil.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.