Evaluation of wetting, structural and thermal properties of electrospun nanofibers at different pineapple leaf fiber / polyethylene terephthalate ratios


  • Fatimah Muyassarah Abdul Aziz
  • Siti Norasmah Surip
  • Khairunnadim Ahmad Sekak
  • Mohd
  • Mou'ad Ahmad Tarawneh
  • Seng Hua Lee


Electrospinning, nanofibers, pineapple leaf fiber, structural properties, wetting properties


In this study, pineapple leaf fiber and polyethylene terephthalate electrospun nanofibers were produced via electrospinning process. Six ratios of pineapple leaf fiber/polyethylene terephthalate, namely 1/10; 1/7,5; 1/5; 1/1 and 1,3/1 were prepared and their wetting, structural and thermal properties were characterised. Wetting properties of this sample were studied using contact angle measurement. X-Ray Diffraction, differential scanning calorimetry and thermogravimetric analysis  were conducted to get better understanding on the structural and its thermal properties respectively. The results revealed that increasing the pineapple leaf fiber content simultaneously increased the ability of nanofibers to adsorb water as shown by lower contact angle degree with 81,6° and adsorption time of 15 seconds. An increase in pineapple leaf fiber ratio did not change the peak position in X-Ray Diffraction and no new peaks observed for any sample. However, the peak at 23° for samples with ratio 1/1 and ratio 1,3/1 exhibited higher intensity compared to that of pure polyethylene terephthalate. Thermal properties obtained from thermogravimetric analysis results suggested that thermal properties were not influenced by the pineapple leaf fiber ratio. Overall, pineapple leaf fiber/polyethylene terephthalate electrospun nanofibers produced at the ratio of 1/1 displayed the optimum performance.


Download data is not yet available.


Aziz, F.M.; Surip, S.N.; Bonnia, N.N.; Sekak, K.A. 2018. The effect of Pineapple Leaf Fiber (PALF) incorporation into Polyethylene Terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conference Series: Earth and Environmental Science, 105(1). https://doi.org/10.1088/1755-1315/105/1/012082

Adam, A.B.A.; Basta, A.H.; El-Saied, H. 2018. Evaluation of Palm Fiber Components an Alternative Biomass Waste for Medium Density Fibreboard Manufacturing. Maderas-Cienc Tecnol 20(4): 579-594. http://dx.doi.org/10.4067/S0718-221X2018005004601

Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. 2015. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 356: 15–30. https://doi.org/10.1016/j.desal.2014.09.033

Aji, I.; Zainudin, E.; Abdan, K.; Sapuan, S.; Khairul, M. 2012. Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J Compos Mater 47(8): 979–990. https://doi:10.1177/0021998312444147

Alharbi, A.R.; Alarifi, I.M.; Khan,W.S.; Asmatulu, R. 2016. Highly hydrophilic electrospun polyacrylonitrile/polyvinypyrrolidone nanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment. J Memb Separ Tech 5(2): 38-56. http://www.lifescienceglobal.com/pms/index.php/jmst/article/view/3966

Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. 2017. The Effect of Silane Treated Fibre Loading on Mechanical Properties of Pineapple Leaf/Kenaf Fibre Filler Phenolic Composites. J Polym Environ 26:1520–1527. https://doi.org/10.1007/s10924-017-1060-z

Chandramohan, D.; Karimuthu, K. 2011. A Review on Natural Fibers. Int J Recent Res 8(2): 194-204. https://www.arpapress.com/Volumes/Vol8Issue2/IJRRAS_8_2_09.pdf

Dorez, G.; Taguet,A.; Ferry, L.;Lopez-Cuesta J.M. 2013. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stabil 98(1): 87-95. https://doi.org/10.1016/j.polymdegradstab.2012.10.02

Enizi, A.M.; Zhago, M.M.; Elzatahry, A.A. 2018. Polymer-Based Electrospun Nanofibers for Biomedical Applications. J Nanomater 8(4): 259. https://doi.org/10.3390/nano8040259

Goetz, L.A.; Jalvo, B.; Rosal, R.; Mathew, A.P. 2016. Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J Membrane Sci 510: 238-248. https://doi.org/10.1016/j.memsci.2016.02.069

Jung, K.H.; Huh, M.W.; Meng, W.; Yuan, J.; Hyun, S.H.; Bae, J.S.; Kang, I.K. 2007. Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105(5): 2816-2823. https://doi.org/10.1002/app.25594

Kang, Y.; Ahn, Y.; Lee, S.H.; Ku, M.K.; Kim, H. 2013. Lignocellulosic Nanofiber Prepared by Alkali Treatment and Electrospinning Using Ionic Liquid. Fibers Polym 14(4): 530-53. https://link.springer.com/article/10.1007/s12221-013-0530-8

Karuppuchamy, S.; Jeong, J.M. 2005. Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition. Mater Chem Phys 93(2-3): 251-254. https://doi.org/10.1016/j.matchemphys.2005.04.015

Lee, S. H.; Ashaari, Z.; Ang, A. F.; Halip, J. A.; Lum, W. C.; Dahali, R.; Halis, R. 2018. Effects of two-step post heat-treatment in palm oil on the properties of oil palm trunk particleboard. Ind Crop Prod 116: 249-258. https://doi.org/10.1016/j.indcrop.2018.02.050

Mahar, F.K.; Mehdi, M.; Qureshi, U.A.; Brohi, K.M.; Zahid, B.; Ahmed, F.; Khatri, Z. 2017. Dyeability of recycled electrospun polyethylene terephthalate (PET) nanofibers: Kinetics and thermodynamic study. J Mol Liq 248: 911-919. https://doi.org/10.1016/j.molliq.2017.10.116

Mahardika, M.; Abral, H.; Kasim, A.; Arief, S.; Asrofi, M. 2018. Production of Nanocellulose from Pineapple Leaf Fibers via High-Shear Homogenization and Ultrasonication. Fibers 6(2): 28. https://doi.org/10.3390/fib6020028

Mello, E.; Ribellato C.; Mohamedelhassan, E. 2014. Improving Concrete Properties with Fibers Addition. Int J Civ Eng 8(3): 249-254. https://pdfs.semanticscholar.org/b339/eefdaf15f4229165d7879b94d450fd6c833c.pdf

Neto, A.R.S.; Araujo, M.A.M.; Souza, F.V.D.; Mattoso L.H.C.; Marconcini, J.M. 2013. Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind Crops Prod 43: 529–537. https://doi.org/10.1016/j.indcrop.2012.08.001

Pickering, K.L.; Effendy, M.G.A.; Lee, T.M. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A-Appl S 83: 98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

Sekar, A.D.; Manickam M. 2019. Current Trends of Electrospun Nanofibers in Water and Wastewater Treatment. In Water and Wastewater Treatment Technologies. Bui, X.T.; Chiemchaisri C.; Fujioka T.; Varjani S. (eds.). Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3259-3_21.

Sridhar, R.; Lakshmirayanan, R.; Madhaiyan, K.; Barathi, V.A.; Lim, K.H.C.; Ramakrishna, S. 2015. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44 (3):790-814. https://doi.org/10.1039/C4CS00226A

Wang, X.; Ding, B.; Sun, G.; Wang M.; Yu J. 2013. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58: 1173–1243. https://doi.org/10.1016/j.pmatsci.2013.05.001

Yu, D.G.; Wang, X.; Li, X.Y.; Chian, W.; Li,Y.; Liao Y.Z. 2013. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath. Acta Biomater 9 (3): 5665–5672. https://doi.org/10.1016/j.actbio.2012.10.021




How to Cite

Muyassarah Abdul Aziz, F. ., Norasmah Surip, S. ., Ahmad Sekak, K. ., Khairun Anwar Uyup, M. ., Ahmad Tarawneh, M. ., & Hua Lee, S. . (2021). Evaluation of wetting, structural and thermal properties of electrospun nanofibers at different pineapple leaf fiber / polyethylene terephthalate ratios. Maderas-Cienc Tecnol, 23, 1–12. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4602