Evaluation of wetting, structural and thermal properties of electrospun nanofibers at different pineapple leaf fiber / polyethylene terephthalate ratios
Keywords:
Electrospinning, nanofibers, pineapple leaf fiber, structural properties, wetting propertiesAbstract
In this study, pineapple leaf fiber and polyethylene terephthalate electrospun nanofibers were produced via electrospinning process. Six ratios of pineapple leaf fiber/polyethylene terephthalate, namely 1/10; 1/7,5; 1/5; 1/1 and 1,3/1 were prepared and their wetting, structural and thermal properties were characterised. Wetting properties of this sample were studied using contact angle measurement. X-Ray Diffraction, differential scanning calorimetry and thermogravimetric analysis were conducted to get better understanding on the structural and its thermal properties respectively. The results revealed that increasing the pineapple leaf fiber content simultaneously increased the ability of nanofibers to adsorb water as shown by lower contact angle degree with 81,6° and adsorption time of 15 seconds. An increase in pineapple leaf fiber ratio did not change the peak position in X-Ray Diffraction and no new peaks observed for any sample. However, the peak at 23° for samples with ratio 1/1 and ratio 1,3/1 exhibited higher intensity compared to that of pure polyethylene terephthalate. Thermal properties obtained from thermogravimetric analysis results suggested that thermal properties were not influenced by the pineapple leaf fiber ratio. Overall, pineapple leaf fiber/polyethylene terephthalate electrospun nanofibers produced at the ratio of 1/1 displayed the optimum performance.
Downloads
References
Aziz, F.M.; Surip, S.N.; Bonnia, N.N.; Sekak, K.A. 2018. The effect of Pineapple Leaf Fiber (PALF) incorporation into Polyethylene Terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conference Series: Earth and Environmental Science, 105(1). https://doi.org/10.1088/1755-1315/105/1/012082
Adam, A.B.A.; Basta, A.H.; El-Saied, H. 2018. Evaluation of Palm Fiber Components an Alternative Biomass Waste for Medium Density Fibreboard Manufacturing. Maderas-Cienc Tecnol 20(4): 579-594. http://dx.doi.org/10.4067/S0718-221X2018005004601
Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. 2015. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 356: 15–30. https://doi.org/10.1016/j.desal.2014.09.033
Aji, I.; Zainudin, E.; Abdan, K.; Sapuan, S.; Khairul, M. 2012. Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J Compos Mater 47(8): 979–990. https://doi:10.1177/0021998312444147
Alharbi, A.R.; Alarifi, I.M.; Khan,W.S.; Asmatulu, R. 2016. Highly hydrophilic electrospun polyacrylonitrile/polyvinypyrrolidone nanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment. J Memb Separ Tech 5(2): 38-56. http://www.lifescienceglobal.com/pms/index.php/jmst/article/view/3966
Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. 2017. The Effect of Silane Treated Fibre Loading on Mechanical Properties of Pineapple Leaf/Kenaf Fibre Filler Phenolic Composites. J Polym Environ 26:1520–1527. https://doi.org/10.1007/s10924-017-1060-z
Chandramohan, D.; Karimuthu, K. 2011. A Review on Natural Fibers. Int J Recent Res 8(2): 194-204. https://www.arpapress.com/Volumes/Vol8Issue2/IJRRAS_8_2_09.pdf
Dorez, G.; Taguet,A.; Ferry, L.;Lopez-Cuesta J.M. 2013. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stabil 98(1): 87-95. https://doi.org/10.1016/j.polymdegradstab.2012.10.02
Enizi, A.M.; Zhago, M.M.; Elzatahry, A.A. 2018. Polymer-Based Electrospun Nanofibers for Biomedical Applications. J Nanomater 8(4): 259. https://doi.org/10.3390/nano8040259
Goetz, L.A.; Jalvo, B.; Rosal, R.; Mathew, A.P. 2016. Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J Membrane Sci 510: 238-248. https://doi.org/10.1016/j.memsci.2016.02.069
Jung, K.H.; Huh, M.W.; Meng, W.; Yuan, J.; Hyun, S.H.; Bae, J.S.; Kang, I.K. 2007. Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105(5): 2816-2823. https://doi.org/10.1002/app.25594
Kang, Y.; Ahn, Y.; Lee, S.H.; Ku, M.K.; Kim, H. 2013. Lignocellulosic Nanofiber Prepared by Alkali Treatment and Electrospinning Using Ionic Liquid. Fibers Polym 14(4): 530-53. https://link.springer.com/article/10.1007/s12221-013-0530-8
Karuppuchamy, S.; Jeong, J.M. 2005. Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition. Mater Chem Phys 93(2-3): 251-254. https://doi.org/10.1016/j.matchemphys.2005.04.015
Lee, S. H.; Ashaari, Z.; Ang, A. F.; Halip, J. A.; Lum, W. C.; Dahali, R.; Halis, R. 2018. Effects of two-step post heat-treatment in palm oil on the properties of oil palm trunk particleboard. Ind Crop Prod 116: 249-258. https://doi.org/10.1016/j.indcrop.2018.02.050
Mahar, F.K.; Mehdi, M.; Qureshi, U.A.; Brohi, K.M.; Zahid, B.; Ahmed, F.; Khatri, Z. 2017. Dyeability of recycled electrospun polyethylene terephthalate (PET) nanofibers: Kinetics and thermodynamic study. J Mol Liq 248: 911-919. https://doi.org/10.1016/j.molliq.2017.10.116
Mahardika, M.; Abral, H.; Kasim, A.; Arief, S.; Asrofi, M. 2018. Production of Nanocellulose from Pineapple Leaf Fibers via High-Shear Homogenization and Ultrasonication. Fibers 6(2): 28. https://doi.org/10.3390/fib6020028
Mello, E.; Ribellato C.; Mohamedelhassan, E. 2014. Improving Concrete Properties with Fibers Addition. Int J Civ Eng 8(3): 249-254. https://pdfs.semanticscholar.org/b339/eefdaf15f4229165d7879b94d450fd6c833c.pdf
Neto, A.R.S.; Araujo, M.A.M.; Souza, F.V.D.; Mattoso L.H.C.; Marconcini, J.M. 2013. Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind Crops Prod 43: 529–537. https://doi.org/10.1016/j.indcrop.2012.08.001
Pickering, K.L.; Effendy, M.G.A.; Lee, T.M. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A-Appl S 83: 98–112. https://doi.org/10.1016/j.compositesa.2015.08.038
Sekar, A.D.; Manickam M. 2019. Current Trends of Electrospun Nanofibers in Water and Wastewater Treatment. In Water and Wastewater Treatment Technologies. Bui, X.T.; Chiemchaisri C.; Fujioka T.; Varjani S. (eds.). Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3259-3_21.
Sridhar, R.; Lakshmirayanan, R.; Madhaiyan, K.; Barathi, V.A.; Lim, K.H.C.; Ramakrishna, S. 2015. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44 (3):790-814. https://doi.org/10.1039/C4CS00226A
Wang, X.; Ding, B.; Sun, G.; Wang M.; Yu J. 2013. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58: 1173–1243. https://doi.org/10.1016/j.pmatsci.2013.05.001
Yu, D.G.; Wang, X.; Li, X.Y.; Chian, W.; Li,Y.; Liao Y.Z. 2013. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath. Acta Biomater 9 (3): 5665–5672. https://doi.org/10.1016/j.actbio.2012.10.021
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.