Crystallinity and impact strength improvement of wood-polylactic acid biocomposites produced by rotational and compression molding
Keywords:
Biocomposites, compression molding, polylactic acid, rotational molding, thermal annealingAbstract
Polylactic acid is one of the most used biopolymers due to its overall properties and biodegradability. Nevertheless, polylactic acid has important drawbacks such as brittleness, low thermal stability, and higher cost than most commodity polymers. In order to overcome those disadvantages without compromising biodegradability, the addition of wood particles and thermal annealing on the crystallinity and impact strength of wood-polylactic acid biocomposites were studied. The samples were prepared by compression and rotational molding using two different wood particles: white ash and tzalam. The results showed that thermal annealing at 100 °C, 40 minutes, increased the crystallinity up to 60 % and also improved the thermal stability of polylactic acid and its biocomposites as determined via dynamic mechanical analysis. The specimens not exposed to thermal annealing exhibited important storage modulus loss above 60 °C, which mostly disappeared with the thermal treatment. Furthermore, the impact strength was substantially increased by the thermal treatment. Additionally, accelerated weathering tests showed that the thermally annealed samples had better dimensional stability growing their potential applications over a wider range of conditions.
Downloads
References
Adefisan, O.O.; McDonald, A.G. 2019. Evaluation of the strength, sorption and thermal properties of bamboo plastic composites. Maderas-Cienc Tecnol 21: 3-14. http://dx.doi.org/10.4067/S0718-221X2019005000101
Altuntas, E.; Aydemir, D. 2019. Effects of wood flour on the mechanical, thermal and morphological properties of poly(l-lactic acid)-chitosan biopolymer composites. Maderas-Cienc Tecnol 21: 611-618. http://dx.doi.org/10.4067/S0718-221X2019005000416
American Society for Testing and Materials. 2013. ASTM D4329-13: Standard practice for fluorescent ultraviolet (UV) lamp apparatus exposure of plastics. ASTM. West Conshohocken, PA, USA. https://doi.org/10.1520/D4329-13
American Society for Testing and Materials. 2014. ASTM D638-14: Standard test method for tensile properties of plastics. ASTM. West Conshohocken, PA, USA. https://doi.org/10.1520/D0638-14
American Society for Testing and Materials. 2017. ASTM D790-17: Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM. West Conshohocken, PA, USA. https://doi.org/10.1520/D0790-17
American Society for Testing and Materials. 2018. ASTM D6110-18: Standard test method for determining the Charpy impact resistance of notched specimens of plastics. ASTM. West Conshohocken, PA, USA. https://doi.org/10.1520/D6110-18
American Society for Testing and Materials. 2018. ASTM D570-18: Standard test method for water absorption of plastics. ASTM. West Conshohocken, PA, USA. https://doi.org/10.1520/D0570-98R18
Arias, A.; Heuzey, M.C.; Huneault, M.A. 2013. Thermomechanical and crystallization behavior of polylactide-based flax fiber biocomposites. Cellulose 20: 439-452. https://doi.org/10.1007/s10570-012-9836-8
Auras, R.; Lim, L.T.; Selke, S.E.M.; Tsuji, H. 2010. Poly(lactic acid): synthesis, structures, properties, processing and applications. Wiley Series on Polymer Engineering and Technology, Hoboken, USA. https://doi.org/10.1002/9780470649848
Cisneros-López, E.O.; Pérez-Fonseca, A.A.; González, Y.; González-Núñez, R.; Rodrigue, D.; Robledo-Ortíz, J.R. 2018. Polylactic acid-agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Adv Polym Technol 37: 2528-2540. https://doi.org/10.1002/adv.21928
Dong, Y.; Ghataura, A.; Takagi, H.; Haroosh, H.; Nakagaito, A.; Lau, K.T. 2014. Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Compos Part A Appl Sci Manuf 63: 76-84. https://doi.org/10.1016/j.compositesa.2014.04.003
Faludi, G.; Dora, G.; Renner, K.; Móczó, J.; Pukánszky, B. 2013. Improving interfacial adhesion in PLA/wood biocomposites. Compos Sci Technol 89: 77-82. https://doi.org/10.1016/j.compscitech.2013.09.009
Ferrer-Balas, D.; Maspoch, M.L.; Martinez, A.B.; Santana, O.O. 2001. Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer 42: 1697-1705. https://doi.org/10.1016/S0032-3861(00)00487-0
Frone, A.N.; Berlioz, S.; Chailan, J.F.; Panaitescu, D.M. 2013. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91: 377-384. https://doi.org/10.1016/j.carbpol.2012.08.054
González-López, M.E.; Robledo-Ortíz, J.R.; Manríquez-González, R.; Silva-Guzman, J.A.; Pérez-Fonseca, A.A. 2018. Polylactic acid functionalization with maleic anhydride and its use as coupling agent in natural fiber biocomposites: a review. Compos Interfaces 25: 515-538. https://doi.org/10.1080/09276440.2018.1439622
González-López, M.E.; Pérez-Fonseca, A.A.; Cisneros-López, E.O.; Manríquez-González, R.; Ramírez-Arreola, D.E.; Rodrigue, D.; Robledo-Ortíz, J.R. 2019. Effect of maleated PLA on the properties of rotomolded PLA-agave fiber biocomposites. J Polym Environ 27: 61-73. https://doi.org/10.1007/s10924-018-1308-2
González-López, M.E.; Martín del Campo, A.S.; Robledo-Ortíz, J.R.; Arellano, M.; Pérez-Fonseca, A.A. 2020. Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polym Degrad Stabil 179: 109290. https://doi.org/10.1016/j.polymdegradstab.2020.109290
Greco, A.; Maffezzoli, A.; Forleo, S. 2014. Sintering of PLLA powders for rotational molding. Thermochim Acta 582: 59-67. https://doi.org/10.1016/j.tca.2014.03.005
Greco, A.; Maffezzoli, A. 2015. Analysis of the suitability of poly(lactic acid) in rotational molding process. Adv Polym Technol 34(3): 1-8. https://doi.org/10.1002/adv.21505
Greco, A.; Maffezzoli, A. 2017. Rotational molding of poly(lactic acid): Effect of polymer grade and granulometry. Adv Polym Technol 36(4): 477-482. https://doi.org/10.1002/adv.21630
Gunjal, J.; Aggarwal, P.; Chauhan, S. 2020. Changes in colour and mechanical properties of wood polypropylene composites on natural weathering. Maderas-Cienc Tecnol 22: 325-334. http://dx.doi.org/10.4067/S0718-221X2020005000307
Islam, M.S.; Pickering, K.L.; Foreman, N.J. 2010. Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites. N.J. Polym Degrad Stab 95: 59-65. https://doi.org/10.1016/j.polymdegradstab.2009.10.010
Kaynak, C.; Sarı, B. 2016. Accelerated weathering performance of polylactide and its montmorillonite nanocomposite. Appl Clay Sci 121–122: 86–94. https://doi.org/10.1016/j.clay.2015.12.025
Kim, H.S.; Lee, B.H.; Choi, S.W. 2007. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos Part A Appl Sci Manuf 38: 1473-1482. https://doi.org/10.1016/j.compositesa.2007.01.004
Mahfoudh, A.; Cloutier, A; Rodrigue, D. 2013. Characterization of UHMWPE/wood composites produced via dry-blending and compression molding. Polym Compos 34: 510–516. https://doi.org/10.1002/pc.22455
Martín del Campo, A.S.; Robledo-Ortíz, J.R.; Arellano, M.; Rabelero, M.; Pérez-Fonseca, A.A. 2020. Accelerated weathering of polylactic acid/agave fiber biocomposites and the effect of fiber–matrix adhesion. J Polym Environ 29: 937–947. https://doi.org/10.1007/s10924-020-01936-z
Mathew, A.P.; Oksman, K.; Sain, M. 2006. The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101: 300-310. https://doi.org/10.1002/app.23346
Metsä-Kortelainen, S.; Antikainen, T.; Viitaniemi, P. 2006. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz Roh Werkst 64: 192–197. https://doi.org/10.1007/s00107-005-0063-y
Mohanty, A.K.; Misra, M.; Drzal, L.T. 2005. Natural Fibers, Biopolymers, and Biocomposites. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9780203508206
Niemczyk, A.; Dziubek, K.; Grzymek, M.; Czaja, K. 2019. Accelerated laboratory weathering of polypropylene composites filled with synthetic silicon-based compounds. Polym Degrad Stab 161: 30-38. https://doi.org/10.1016/j.polymdegradstab.2019.01.005
Perego, G.; Cella, G.D.; Bastlol, C. 1996. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59: 37-43. https://doi.org/10.1002/(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N
Pérez-Fonseca, A.A.; Robledo-Ortíz, J.R.; González-Núñez, R.; Rodríguez, D. 2016. Effect of thermal annealing on the mechanical and thermal properties of polylactic acid-cellulosic fiber biocomposites. J Appl Polym Sci 133: 1-9. https://doi.org/10.1002/app.43750
Pérez-Fonseca, A.A.; Robledo-Ortíz, J.R.; Moscoso-Sánchez, F.J.; Fuentes-Talavera, F.J.; Rodrigue, D.; González-Núñez, R. 2015. Self-hybridization and coupling agent effect on the properties of natural fiber/HDPE composites. J Polym Environ 23: 126-136. https://doi.org/10.1007/s10924-014-0706-3
Petchwattana, N.; Covavisaruch, S.; Petthai, S. 2014. Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly(lactic acid). Polym Bull 71: 1947-1959. https://doi.org/10.1007/s00289-014-1165-7
Piekarska, K.; Piorkowska, E.; Krasnikova, N.; Kulpinski, P. 2017. Polylactide composites with waste cotton fibers: Thermal and mechanical properties. Polym Compos 35: 747-751. https://doi.org/10.1002/pc.22717
Pickering, K.L. 2008. Properties and performance of natural-fibre composites. Woodhead Publishing, Cambridge, England. https://doi.org/10.1533/9781845694593
Robledo-Ortíz, J.R.; González-López, M.E.; Martín del Campo, A.S.; Peponi, L.; González-Nuñez, R.; Rodrigue, D.; Pérez-Fonseca, A.A. 2021. Fiber-matrix interface improvement via glycidyl methacrylate compatibilization for rotomolded poly(lactic acid)/agave fiber biocomposites. J Compos Mater 55: 201-212. https://doi.org/10.1177/0021998320946821
Robledo-Ortíz, J.R.; González-López, M.E.; Rodrigue, D.; Gutiérrez-Ruiz, J.F.; Prezas-Lara, F.; Pérez-Fonseca, A.A. 2020. Improving the compatibility and mechanical properties of natural fibers/green polyethylene biocomposites produced by rotational molding. J Polym Environ 28: 1040-1049. https://doi.org/10.1007/s10924-020-01667-1
Rodríguez-Jiménez, S.; Duarte-Aranda, S.; Canché-Escamilla, G. 2019. Chemical composition and thermal properties of tropical wood from the Yucatán dry forests. BioResources 14: 2651-2666. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2019/02/BioRes_14_2_2651_RodriguezJ_DC_Chem_Composition_Thermal_Props_Tropical_Wood_14567.pdf
Sawpan, M.A.; Islam, M.R.; Hossain-Beg M.R.; Pickering, K. 2019. Effect of accelerated weathering on physico-mechanical properties of polylactide bio-composites. J Polym Environ 27: 942-955. https://doi.org/10.1007/s10924-019-01405-2
Srithep, Y.; Nealey, P.; Turng, L.S. 2013. Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym Eng Sci 53: 580-588. https://doi.org/10.1002/pen.23304
Way, C.; Wu, D.Y.; Cram, D.; Dean, K.; Palombo, E. 2013. Processing stability and biodegradation of polylactic acid (PLA) composites reinforced with cotton linters or maple hardwood fibres. J Polym Environ 21(1): 54-70. https://doi.org/10.1007/s10924-012-0462-1
Yang, T.C.; Hung, K.C.; Wu, T.L.; Wu, T.M.; Wu, J.H. 2015. A comparison of annealing process and nucleating agent (zinc phenylphosphonate) on the crystallization, viscoelasticity, and creep behavior of compression-molded poly(lactic acid) blends. Polym Degrad Stab 121: 230-237. https://doi.org/10.1016/j.polymdegradstab.2015.09.012
Yatigala, N.S.; Bajwa, D.S.; Bajwa, S.G. 2018. Compatibilization improves performance of biodegradable biopolymer composites without affecting UV weathering characteristics. J Polym Environ 26: 4188-4200. https://doi.org/10.1007/s10924-018-1291-7
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.