Bonding quality of two lesser-used wood species Brachystegia spiciformis and Julbernardia globiflora, from mozambique

Authors

  • Narciso F. Bila
  • Rosilani Trianoski
  • Setsuo Iwakiri
  • Andrade F. Egas
  • Alberto A. Manhiça
  • Márcio P. Da Rocha

Keywords:

Bonding quality, edge glued panel, emulsion polymeric isocyanate, polyvinyl acetate, value-added products, wood bonding

Abstract

The objective of this study was to evaluate the density, chemical properties and bonding quality of two lesser-used Mozambican wood species known as messassas (Brachystegia spiciformis and Julbernardia globiflora) aiming at edge-glued panel production. The bonding was performed using structural adhesive polyvinyl acetate D4, semi-structural adhesive emulsion polymer isocyanate and non-structural polyvinyl acetate D3 applied at 120·m-2 and 180·m-2 weights. Density, chemistry, edge shear bonding, wood failure percentage and the finger-joint tests were performed in accordance with ISO 13061-2:2014 (E), TAPPI, EN 13354:2008, ABNT-NBR ISO 12466-1:2006 and ASTM 5572:2005 standards, respectively. The results showed that both species have medium density, high extractives and lignin contents typical of tropical wood. The emulsion polymer isocyanate adhesive was approved with better performance compared to polyvinyl acetate D3 and D4 adhesives. It can also be affirmed that Brachystegia spiciformis and Julbernardia globiflora have similar bonding behaviour and the potential for producing edge glued panel panels, especially for indoor use.

Downloads

Download data is not yet available.

References

Ali, A.; Uetimane, J.R.; Lhate, I.; Terziev, N. 2008. Anatomical characteristics, properties and use of traditionally used and lesser-known wood species from

Mozambique: a literature review. Wood Sci Technol 42(6): 453–472. https://doi.org/10.1007/s00226-008-0186-5

Almeida, V.C. 2013. Assessment of the potential for the use of tropical wood waste for the production of edged glued panels - EGP. PhD thesis, Federal University of Paraná, Brazil. https://acervodigital.ufpr.br/bitstream/handle/1884/34627/R%20-%20T%20-%20VANESSA%20COELHO%20ALMEIDA.pdf?sequence=1&isAllowed=y

Almeida, C.C.F.; Cunha, A.B.; Rios, P.D. 2017. Quality evaluation of Cupressus lusitanica Mill. wood end-grain glued joints for edge glued panel production. Sci For 45(113): 9 – 19. https://www.ipef.br/publicacoes/scientia/nr113/cap01.pdf

American Society for Testing and Materials. 2005. ASTM 5572: Standard specification for adhesives used for finger joints in nonstructural lumber products D 5572 – 95 (Reapproved 2005). West Conshohocken, United States. 15p.

Bunster, J.H. 1995. 52 madeiras de Mocambique. Catalogo tecnológico. Eduardo Mondlane University, Maputo, Mozambique.

Bila, N.; Iwakiri, S.; Trianoski, R.; Prata, J.G. 2016. Avaliação da qualidade de juntas coladas de seis espécies de madeiras tropicais da Amazônia. Floresta 46(4): 455-464. http://dx.doi.org/10.5380/rf.v46i4.36311

Clauß, S.; Joscak, M.; Niemz, P. 2011. Thermal stability of glued wood joints measured by shear tests. Eur J Wood Prod 69(1): 101-111. https://doi.org/10.1007/s00107-010-0411-4

Conti, A.C. 2011. Resistência mecânica de juntas coladas em madeira de Eucalyptus sp. PhD thesis, Estadual Paulista University, Guaratinguetá, Brazil.

https://repositorio.unesp.br/bitstream/handle/11449/103751/deconti_ac_dr_guara.pdf?sequence=1&isAllowed=y

Del Menezzi, C.H.S. 2004. Estabilização dimensional por meio do tratamento térmico e seus efeitos sobre as propriedades de painéis de partículas orientadas (OSB). Ph.D Thesis, Paraná Federal University, Brazil.https://acervodigital.ufpr.br/bitstream/handle/1884/26735/T%20-20DEL%20MENEZZI%2c%20CLAUDIO%20HENRIQUE%20SOARES.pdf?sequence=1&isAllowed=y

European Committee for Standardization. 1994. EN 326-1: Sampling, cutting and inspection of wood-based panel products - Sampling and cutting of test pieces and expression of test results. ECS, Brussels.

European Committee for Standardization 2008. EN 13353: Solid wood panel – Requirements. ECS, Brussels.

European Committee for Standardization 2008. EN 13354: Solid wood panels – Bonding quality – Test Method. ECS, Brussels.

Fengel, D.; Wegener, G. 1984. Wood Chemistry, ultrastructure reactions. 2nd Edition, Walter de Gruyter, Berlin, Germany.

Frihart, C.R.; Hunt, C.G. 2010. Adhesives with Wood Materials: Bond Formation and Performance. Madison: U.S. Department of Agriculture, Forest Service, United States. https://www.srs.fs.usda.gov/pubs/37422

Gaspar, F.; Cruz, H.; Nunes, L.; Gomes, A. 2005. Fabrico de Estruturas Lameladas – Coladas com madeira de Pinho Bravo tratado em autoclave. https://www.academia.edu/6313133/Fabrico_de_estruturas_lameladas coladas_com_madeira_de_pinho_bravo_tratada_em_autoclave

Goldschimid, O. 1971. Ultraviolet spectra. In Lignin’s: occurrence, formation, structure and reactions. Sarkanen, K.V; Ludwing, C.C. (Eds.). John Wiley & Sons, pp. 241-266, New York, United States.

Gomide, J.L.; Demuner, B.J. 1986. Determination of lignin content in woody material: Modified Klason method. O Papel 47: 36-38.

Grøstad, K.; Pedersen A. 2010. Emulsion Polymer Isocyanates as Wood Adhesive: A Review. J Adhes Sci Technol 24(8-10): 1357 – 1381. https://doi.org/10.1163/016942410X500981

International Organisation for Standardization. 2014. ISO 13061-2: Physical and mechanical properties of wood - Test methods for small clear wood samples. Determination of density for physical and mechanical tests. First Edition. Switzerland.

Iwakiri, S.; Trianoski, R.; Nascimento, C.; Gumane, C.; Lengowski, E.C.; Schardosin, F.Z.; Azambuja, R. 2015. Strength of bonded wood joints of Inga alba (SW) Willd and Swartzia recurva Poepp. Cerne 21(3): 457 – 463. http://www.cerne.ufla.br/site/index.php/CERNE/article/view/1092

Iwakiri S.; Trianoski, R.; Stüpp, A.M.; Cabral, B.M.; Jéssika, G.J.A.C.A. 2019. The Use of Eucalyptus camaldulensis and Eucalyptus urophylla wood in the production of edge glued panels. Floresta 49(2):317- 324. http://dx.doi.org/10.5380/rf.v49i2.57795

Kollmann, F.P.; Kuenzi, E.W.; Stamm, A.J. 1975. Principles of wood science and technology. Volume 2, wood based material. Springer, Berlin, Germany.

Li, R.; Guo, X.; Ekevand, M.; Marklund, B.; Cao, P. 2015. Investigation of glueline shear strength of pine wood bonded with PVAc by response surface methodology. Bioresources 10(3): 3831 – 3838. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/6826

Lima, C.K.P.; Mori, F.A.; Mendes, L.M.; Carneiro, A.C.O. 2007. Características anatômicas e química da madeira de clones de eucaliptos e sua influência na colagem. Cerne 13(2): 123 – 129. https://www.redalyc.org/pdf/744/74413201.pdf

Lhate, I.; Cuvilas, C.; Terziev, N.; Jirjis, R. 2010. Chemical compositions of traditional and lesser-used species from Mozambique. Wood Mater Sci Eng 5(3-4): 143-150. https://doi.org/10.1080/17480272.2010.484867

Lopes, M.C. 2008. Espectroscopia no infravermelho próximo aplicada na avaliação de painéis de madeira colados lateralmente. PhD thesis, Federal University of Paraná, Brazil. https://pt.scribd.com/document/318950526/Espectroscopia-no-infravermelho-proximo-aplicada-na-avaliacao-de-paineis-de-madeira-colados-lateralmente

Lopes, M.C.; Muniz, G.I.B.; Matos, J.L.M.; Tanobe, V.O.A.; Chinasso, C.A.F.; Rosso, S. 2013. Resistência da linha de cola de painéis de Pinus taeda colados lateralmente com diferentes adesivos. Cerne 19(4): 613 - 619. https://doi.org/10.1590/S0104-77602013000400011

Lorenzi, H. 2002. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Instituto Plantarum de Estudos da Flora Ltda, Brazil.

Magalhães, T. 2018. Inventário Florestal Nacional. MITADER. DINAF. Maputo, Mozambique.

Marra, A.A. 1992. Technology of wood bonding. New York: Van Nostrand Reinhold. New York, United States.

Melo, J.E.; Coradin, V.T.R.; Mendes, J.C. 1990. Classes de densidade para madeira da Amazônia brasileira. Silvicultura 12 (42): 695 - 699. In Anais do Congresso Florestal Brasileiro 6, Campos Jordão, Brazil. https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=308015&biblioteca=vaziobusca=autoria:%22MELO,%20J.E.%20de.%22&qFacets=autoria:%22MELO,%20J.E.%20de.%22&sort=&paginacao=t&paginaAtual=1

Molina, J.C.; Calil Neto, C.; Christoforo, A.L. 2016. Resistência à tração de emendas dentadas de madeira de Manilkara huberi para o emprego em madeira laminada colada. Ambient Constr 16(1): 221 - 227. https://doi.org/10.1590/s1678-86212016000100070

Moslemi, A.A. 1974. Particleboard. London: Southern Illinois University Press. United States.

National Directorate of Lands and Forests Sustainable. DNTF. 2017. Exploração Sustentável da Madeira em Moçambique. Maputo, Mozambique.

Namikata, A.P.; Trianoski, R. 2015. Effect of grammage on the bonding quality of glue side of Tectona grandis wood. Rev Ciênc Agrovet 14(3): 224 - 233. https://doi.org/10.5965/223811711432015224

Nascimento, A.M.; Lellis, R.C.C.; Costa, D.L.; Oliveira, C.S. 2002. Comportamento de ligações adesivas em madeiras de reflorestamento. Floram 9(1): 54 – 62. https://floram.org/article/588e21fde710ab87018b45db

Shida, S.; Hiziroglu, S. 2010. Evaluation of Shear Strength of Japanese Wood Species as a Function of Surface Roughness. Forest Prod J 60(4): 400 - 404. https://doi.org/10.13073/0015-7473-60.4.400

Sangumbe, L.M.V.; Pereira, M.; Carrilo, I.; Mendoça, R.T. 2018. An exploratory evaluation of the pulpability of Brachystegia spiciformis and Pericopsis angolensis from the angolan miombo woodlands. Maderas-Cienc Tecnol 20(2): 183 – 198. http://dx.doi.org/10.4067/S0718-221X2018005002301

Santana, M.A.E.; Okino, E.Y.A. 2007. Chemical composition of 36 Brazilian Amazon forest wood species. Holzforschung 61(5): 469-477. https://doi.org/10.1515/HF.2007.084

Sjöström, E. 1981. Wood chemistry: fundamentals and applications (2nd edn). San Diego: Academic Press. United States.

Stamm, A.J. 1964. Wood and cellulose science. The Ronald Press Company - New York. United States.

Statgraphics Technologies. 2021. Statgraphics XVII statistical package. https://www.statgraphics.com/

Technical Association of Pulp and Paper Industry. 2007. TAPPI 204: Test methods. 2nd volume. Atlanta: TAPPI Press. United States.

Technical Association of Pulp and Paper Industry. 2002. TAPPI 252: pH and electrical conductivity of hot water extracts of pulp, paper, and paperboard. Atlanta. United States.

Teixeira, D.E.; Melo, J.E.; Anacleto, J.E. 2014. Testing quality of compression bonding to shearing on six Brazilian hardwood species. Sci For 42(103): 393-401. https://www.ipef.br/publicacoes/scientia/nr103/cap09.pdf

Tienne, D.L.D.C; Nascimento, A.M.; Garcia, R.A.; Silva, D.B. 2011. Qualidade de adesão de juntas de madeira de Pinus coladas em condições simuladas de serviço interna e externa. Floram 18(1): 16 – 29. http://dx.doi.org/10.4322/floram.2011.019

Tsoumis, G. 1991. Science and technology of wood: structure, properties and utilization. Van Nostrand Reinhold, New York, Unites States.

Pizzi, A. 1983. Wood Adhesives Chemistry, Technology, Vol. 12. Marcel Dekker, New York, Unites States.

Pizzi, A.; Mittal, K.L.; 2003. Handbook of adhesive technology (2nd ed.). Revised and Expanded). Marcel Deckker, Nova York, United States. https://polymerinnovationblog.com/wp-content/uploads/2015/02/handbook-of-adhesive-technology.pdf

Prata, J.G. 2010. Technological feasibility study of the use of tropical pine species for the production of glued panels (EGP). Ph.D Thesis, Federal University of Paraná, Brazil. http://www.floresta.ufpr.br/pos-graduacao/defesas/pdf_dr/2010/t290_0334-D.pdf

Uetimane, E.Jr.; Jebrane, M.; Terziev, N.; Daniel, G. 2018. Comparative wood Anatomy and Chemical Composition of Millettia mosssambicensis and Millettia sthulmannii from Mozambique. BioResources 13(2): 3335-3345. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/13200

Vick, C.B. 1999. Adhesive Bonding of Wood Materials. In Wood handbook – Wood as an engineering material, (USDA) Forest Service. Chapter 9: 1-9. Madison, Wisconsin, United States. https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/fplgtr113.pdf

Zangiácomo, A.L.; Lahr, F.A.R. 2007. Emprego de espécies tropicais alternativas na produção de elementos estruturais de madeira laminada colada. Cadernos de Engenharia de Estruturas 9(40): 103-131.

Downloads

Published

2021-01-01

How to Cite

F. Bila, N. ., Trianoski, R. ., Iwakiri, S. ., F. Egas, A. ., A. Manhiça, A. ., & P. Da Rocha, M. . (2021). Bonding quality of two lesser-used wood species Brachystegia spiciformis and Julbernardia globiflora, from mozambique. Maderas. Ciencia Y Tecnología, 23, 1–12. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4780

Issue

Section

Article