Bending moment resistance of t-type joints reinforced with basalt and glass woven fabric materials
Keywords:
Basalt woven fabric, bending moment resistance, glass woven fabric, two-pin dowel joint, wooden dowelAbstract
This study investigated the bending moment resistance of T-type, two-pin dowel joints connected with Scotch pine dowel (Pinus slyvestris), beech dowel (Fagus orientalis), chestnut dowel (Castanea sativa) and oak dowel (Quercus petraea) and reinforced with basalt and glass woven fabric. The tests was carried out to determine the bending moment resistance of dowel joints. As a result of bending test, it was determined that one layer and two surfaces the reinforce with fiber woven fabrics increases the mechanical performance of furniture fasteners according to obtained data from tests conducted on the T-type, two pin dowel joints. The test samples prepared from the oak wooden give the higher moment values than the beech wooden. This study showed that the joining with the oak dowel was 13 % higher than the beech dowel, 32 % the chestnut dowel, and 43 % higher than the Scotch pine dowel (for the bending moment resistance), respectively. According to the bending moment resistance of the samples reinforced by fiber woven fabrics. The highest bending moment resistance value was obtained in the test specimens of reinforced with the basalt woven fabric, the lowest bending moment resistance value was obtained in the test specimens not reinforced (Control). In general, it was determined that the wood species by 3 %, wooden dowel species by 43 %, and fiber woven fabric types by 72 % have been effects on the results of the bending tests.
Downloads
References
André, A.; Johnsson, H. 2010. Flax fiber-reinforced glued-laminated timber in tension perpendicular to the grain: experimental study and probabilistic analysis. J Mater Civ Eng 22 (9): 827–835. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000070
Bal, B.C.; Bektaş, İ. 2018. A research on the determination of the relationship between density and some mechanical properties of wood. Mamad 1(2): 51-61. https://doi.org/10.33725/mamad.467353
Basterra, L.A.; Acuna, L.; Casado, M.; Lopez, G; Bueno, A. 2012. Strength testing of Poplar duo beams, Populus x euramericana (Dode) Guinier cv. I-214, with fibre reinforcement. Constr Build Mater 36: 90-96. https://doi.org/10.1016/j.conbuildmat.2012.05.001
Bektaş, İ.; Güler, C.; Baştürk, M. A. 2002. Principal mechanical properties of eastern beech wood (Fagus orientalis L.) naturally grown in Andırın northeastern mediterranean region of Turkey. Turk J Agric For 26:147–154. https://journals.tubitak.gov.tr/agriculture/issues/tar-02-26-3/tar-26-3-6-0107-1.pdf
Brol, J.; Wdowiak, A. 2017. The use of glass and aramid fibres for the strengthening of timber structures. Ann Wars Univ Life Sci For Wood Technol 100: 128–138. http://wtd.sggw.pl/pix/files/Annals%20of%20WULS%20No%20100%202017.pdf
Brol, J.; Nowak, T.; Wdowiak, A. 2018. Numerical Analysis and Modelling of Timber Elements Strengthened with FRP Materials. Ann Wars Univ Life Sci For Wood Technol 104: 274–282. http://wtd.sggw.pl/pix/files/Annals%20of%20WULS%20tom%20104.pdf
Borri, A.; Corradi, M.; Speranzini, E. 2013a. Reinforcement of wood with natural fibers. Compos B Eng 53: 1-8. https://doi.org/10.1016/j.compositesb.2013.04.039
Borri, A.; Corradi, M.; Speranzini, E. 2013b. Bending tests on natural fiber reinforced fir wooden elements. Adv Mater Res 778: 537–544. https://doi:10.1016/j.compositesb.2013.04.039
Bozkurt, Y.; Erdin, N. 1995. The relationship between density and mechanical properties of woods. Forestist 45(2): 11-34. https://forestist.org/en/the-relationship-between-density-and-mechanical-properties-of-woods-161456
Chairman, C.A.; Kumaresh Babu, S.P. 2013. Mechanical and abrasive wear behavior of glass and basalt fabric-reinforced epoxy composites. J Appl Polym Sci 130(1): 120-130. https://doi.org/10.1002/app.39154
Chen, M.; Li, X.M.; Lyu, J.H. 2018. Influence of dowel diameter and curing time on strength of double dowel joint. Wood Res 63(4): 591-598. http://www.woodresearch.sk/wr/201804/06.pdf
Colombo, C.; Vergani, L.; Burman, M. 2012. Static and fatgiue characterization of new basalt fibre reinforced composites. Compos Struct 94(3): 1165-1174.
http://dx.doi.org/10.1016/j.compstruct.2011.10.007
Dorigato, A; Pegoretti, A. 2012. Fatigue resistance of basalt fibers-reinforced laminates. J Compos Mater 46(15): 1773-1785. https://doi.org/10.1177/0021998311425620
Fiore, V.; Di Bella, G.; Valenza, A. 2011. Glass–basalt/epoxy hybrid composites for marine applications. Mater Des 32(4): 2091-2099. https://doi.org/10.1016/j.matdes.2010.11.043
Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. 2015. A review on basalt fibre and its composites. Compos B Eng 74: 74-94. https://doi.org/10.1016/j.compositesb.2014.12.034
Gaff, M.; Kačík, F.; Gašparík, M. 2019. Impact of thermal modification on the chemical changes and impact bending strength of European oak and Norway spruce wood. Compos Struct 216: 80-88. https://doi:10.1016/j.compstruct.2019.02.09 1
Hao, J.; Xu, L.; Wu, X.; Li, X. 2020. Analysis and modeling of the dowel connection in wood T type joint for optimal performance. Compos Struct 253: 112754. https://doi.org/10.1016/j.compstruct.2020.112754
Kollmann, F.; Cote, W. A. 1968. Principles of wood science and technology. Springer Verlag.
McConnell, E.: McPolin, D.; Taylor, S. 2015. Post-tensioning glulam timber beams with basalt FRP tendons. Constr Mater 168(5): 232–240. https://doi.org/10.1680/coma.14.00032
Monaldo, E.; Nerilli, F.; Vairo, G. 2019. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos Struct 214: 246-263.
https://doi.org/10.1016/j.compstruct.2019.02.002
Nowak, T.P; Jasienko, J.; Czepizak, D. 2013. Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips. Constr Build Mater 40: 197-206. https://dx.doi.org/10.1016/j.conbuildmat.2012.09.106
Raftery, G.M.; Kelly, F. 2015. Basalt FRP rods for reinforcement and repair of timber. Compos. Part B Eng 70: 9–19. https://doi.org/10.1016/j.compositesb.2014.10.036
Osmannezhad, S.; Faezipour, M.; Ebrahimi, G. 2014. Effects of GFRP on bending strength of glulam made of poplar (Populus deltoids) and beech (Fagus orientalis). Constr Build Mater 51: 34-39. https://dx.doi.org/10.1016/j.conbuildmat.2013.10.035
Schober, K.U.; Harte, A.M.; Kliger, R.; Jockwer, R.; Xu, Q.; Chen J.F. 2015. FRP reinforcement of timber structures. Constr Build Mater 97: 106-118.
https://doi:10.1016/j.conbuildmat.2015.06.020
Sim, J. 2001. Static and dynamics analysis of strengthening effect of glass FRP for bridge deck plate. Tech Res Report submitted to Hanyang University.
Turkish Standardization Institute. 1976. TS 2471: Wood - Determination of Moisture Content for Physical and Mechanical Tests. TSE. Ankara, Turkey. https://intweb.tse.org.tr/
Turkish Standardization Institute. 1976. TS 2472: Wood - Determination of Density for Physical and Mechanical Tests. TSE. Ankara, Turkey. https://intweb.tse.org.tr/
Uysal, M.; Haviarova, E. 2018. Estimating design values for two-pin moment resisting dowel joints with lower tolerance limit approach. Bioresources 13(3): 5241-5253.
Vassiliou, V.; Barboutis, I.; Kamperidou, V. 2016. Strength of corner and middle joints of upholstered furniture frames constructed with black locust and beech wood. Wood Res 61(3): 495-504. http://www.woodresearch.sk/wr/201603/15.pdf
Wdowiak, A.; Brol, J. 2019. Effectiveness of reinforcing bent non-uniform pre-stressed glulam beams with basalt fibre reinforced polymers rods. Materials 12: 3141. https://doi.org/10.3390/ma12193141
Wdowiak-Postulak, A. 2021. Basalt fibre reinforcement of bent heterogeneous glued laminated beams. Materials 14: 51. https://dx.doi.org/10.3390/ma14010051
Wang, X.; Wu, Z.; Wu, G.; Zhu, H.; Zen, F. 2013. Enhancement of basalt FRP by hybridization for long-span cablestayed bridge. Compos B Eng 44(1): 184-192. https://doi.org/10.1016/j.compositesb.2012.06.001
Wang, B.; Bachtiar, E.V.; Yan, L.; Kasal, B.; Fiore, V. 2019. Flax; Basalt; E-Glass frp and their hybrid FRP strengthened wood beams: an experimental study. Polym 11(8): 1-16. https://doi.org/10.3390/polym11081255
Yerlikaya, N.C., Aktas, A. 2013. Enhancement of t-joints of spruce wood reinforced by using glass-fiber composite laminate. Acad J 8 (13): 515-523. https://doi.org/10.5897/SRE12.681
Záborský, V.; Sikora, A.; Gaff, M.; Kašičková, V.; Borůvka, V. 2018. Effect of selected factors on stiffness of dowel joints. Bioresources 13(3): 5416-5431.
Zhang, J.; Li, G.; Sellers Jr., T. 2003. Bending fatigue life of two-pin dowel joints in furniture grade pine plywood. For Prod J 53 (9): 33-39.
Zhou, A.; Chow, C.L.; Lau, D. 2018. Structural behavior of GFRP reinforced concrete columns under the influence of chloride at casting and service stages. Compos Part B Eng 136: 1-9. https://doi:10.1016/j.compositesb.2017.10.011
Zhou, A.; Chow, C.L.; Lau, D. 2019. Structural performance of FRP confined seawater concrete columns under chloride environment. Compos Struct 216: 12-19. https://doi:10.1016/j.compstruct.2019.02.058
Zhou, A.; Chow, C.L.; Lau, D. 2020. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature. Compos Part A Appl Sci Manuf 131: 105802. https://doi:10.1016/j.compositesa.2020.105802
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.