Biologically synthesised copper oxide and zinc oxide nanoparticle formulation as an environmentally friendly wood protectant for the management of wood borer, Lyctus africanus

Authors

  • K. S. Shiny
  • R. Sundararaj

Keywords:

Biological synthesis, Lantana camara, Lyctus africanus, nanoparticles, wood protection

Abstract

The management of Lyctus africanus, one of the major dry wood pests in the tropical region is difficult due to its secluded habits and long lifecycle and therefore, its control measures are limited to the usage of insecticides. The insecticides particularly the metal salts are effective, but in some cases their leaching leads to concerns about environmental pollution. Nanometal particles are found to be more effective than metal salts. Presently available metal nanoparticles are synthesized using physical or chemical methods and their production results in toxic by-products and are costly. The current investigation deals with synthesis and use of metal nanoparticle for wood protection in an environmentally friendly and cost-effective way. The plant extracts that are reported to have wood preservative properties were used for the synthesis of metal nanoparticles. Copper oxide and zinc oxide nanoparticles were synthesized using leaf extracts of Lantana camara. The efficacy of the synthesized Lantana camara leaf extract and copper oxide or zinc oxide nanoparticle formulation as a wood protectant was tested against Lyctus africanus as per BIS 4873 Part 2. The formulation of copper oxide nanoparticle and Lantana camara leaf extract effectively protected the treated rubberwood blocks from Lyctus africanus attack, when compared to zinc oxide nanoparticle Lantana camara leaf extract formulation and can be developed into a stable, ecofriendly wood preservative.

Downloads

Download data is not yet available.

References

Akhtari, M.; Arefkhani, M. 2010. Application of Nanotechnology in Wood Preservation. In 41st Annual Meeting of the International Research Group on Wood Protection, Biarritz, France, 9-13 May 2010. IRG Secretariat. IRG/WP 10-30542. https://www.irg-wp.com/irgdocs/details.php?3f18c1c7-832a-80ae-9309-800a419dce94

Ali, H.R.K.; Hashim, S.M. 2019. Determining Efficacy and Persistence of the Wood Preservative Copper Chrome Arsenate Type C against The Wood Destroying Insects and Treated Wood Durability. Egypt Acad J Biolog Sci 12(1): 65-78. https://dx.doi.org/10.21608/eajbsa.2019.26281

Ash, M.; Ash, I. 2004. Handbook of preservatives. Synapse Information Resources, Inc. New York, USA. 850. https://www.synapseinfo.com/pr03.htm

ASTM. 2005. D1413-05: Standard Test Method for Wood Preservatives by Laboratory Soil-Block Cultures. ASTM International, West Conshohocken, PA, USA. http://www.astm.org/cgi-bin/resolver.cgi?D1413

Bak, M.; Yimmou, B.M.; Csupor, K.; Ne ́meth, R., Cso ́ka, L. 2012. Enhancing the durabil- ity of wood against wood destroying fungi using nano-zink. In: International Scientific Conference on Sustainable Development & Ecological Footprint, Budapest, Hungary, 16. http://cost-fp1006.fh-salzburg.ac.at/fileadmin/documents/projects/Hungary/Enhancing_the_durability_of_wood_against_wood_destroying_fungi_using_nano-zink.pdf

Borges, C.C.; Tonoli, G.H.D.; Cruz, T.M.; Duarte, P.J.; Junqueira, T.A. 2018. Nanoparticles-based wood preservatives: the next generation of wood protection. Cerne 24 (4): 397-407. DOI : 10.1590/01047760201824042531

Canadian Wood Council. 2020. Durability Solutions. Available http://cwc.ca/design-with-wood/ durability/durability-solutions/.

Cao, L.; Zhou, Z.; Niu, S.; Cao, C.; Li, X.; Shan, Y.; Huang, Q. 2018. Positive-Charge Functionalized Mesoporous Silica Nanoparticles as Nanocarriers for Controlled 2,4-Dichlorophenoxy Acetic Acid Sodium Salt Release. J Agric Food Chem 66(26): 6594-6603. https://doi.org/10.1021/acs.jafc.7b01957

Civardi, C.; Schwarze, F.W.; Wick, P. 2015. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles. Environ Pollut 200: 126-32. https://doi.org/10.1016/j.envpol.2015.02.018

Clausen, C.A. 2007. Nanotechnology: Implications for the wood preservation Industry. In 38th the International Research Group on Wood Protection, Jackson Hole, WY, 20-24 May 2007. IRG Secretariat IRG/WP 07-30415. https://www.fpl.fs.fed.us/documnts/pdf2007/fpl_2007_clausen002.pdf

Clausen, C.A.; Green, F.; Kartal, S.N. 2010. Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Res Lett 5: 1464-1467. https://doi.org/10.1007/s11671-010-9662-6

Creffield, J.W.; Greaves, H.; Howick, C.D. 1983. Boracol 40 - A potential remedial and preservative treatment for lyctids. In 14th Annual Meeting of the International Research Group on Wood Protection, Surfers Paradise, Queensland, Australia, 9-13 May 1983. IRG Secretariat. IRG/WP 1192. https://www.irg-wp.com/irgdocs/details.php?eeda9c60-0baa-42ae-a163-40472ba8234b

Creffield, J.W. 1996. Wood Destroying Insects-Wood Borers and Termites. 2nd Edn., CSIRO Division of Forestry and Forest Products. 44.www.earthlife.net/insects/pub/CSIRO.html

Dhillon, G.S.; Brar, S.K. Kaur, S.; Verma, M. 2012. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32: 49–73. https://doi.org/10.3109/07388551.2010.550568

Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. 2017. Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15: 11-23. doi.org/ https://doi.org/10.1016/j.btre.2017.03.00210.1016/j.btre.2017.03.002

Dujardin, E.; Peet, C.; Stubbs, G.; Culver, J.N.; Mann, S. 2003. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3: 413–417. https://doi.org/10.1021/nl034004o

Dwivedi, S.; Saquib, Q.; Ahmad, B.; Ansari, S.M.; Azam, A.; Musarrat, J. 2018. Toxicogenomics: a new paradigm for nanotoxicity evaluation. Adv Exp Med Biol 1048: 143-161. https://doi.org/10.1007/978-3-319-72041-8_9

Ezealisiji, K.M.; Siwe-Noundou, X.; Maduelosi, B.; Nwachukwu, N.W.; Krause, R.W.M. 2019. Green Synthesis of Zinc Oxide Nanoparticles Using Solanum torvum (L) leaf extract and evaluation of the Toxicological Profile of the ZnO Nanoparticles-Hydrogel Composite in Wistar Albino Rats. Inter Nano Lett 9: 99–107. https://doi.org/10.1080/17518253.2019.1687761

Fakhari, S.; Jamzad, M.; Kabiri Fard, H. 2019. Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev 12(1): 19-24. https://doi.org/10.1080/17518253.2018.1547925

Fears, R.D.; Leca, J.L. 1995. Threshold levels for dip treatments of chlorpyrifos for borer control. In 26th Annual Meeting of the International Research Group on Wood Protection, Helsingør, Denmark, 11-16 June 1995. IRG Secretariat. IRG/WP 95-10137. https://www.irg-wp.com/irgdocs/details.php?4b712422-fefd-4b7b-b732-c91fa688a93c

Findlay, W.P.K. 1985. The nature and durability of wood. Preservation of timber in the tropics. Martinus Nijhoff/Dr. W. Junk Publishers, Lancaster. 1–13.

Freeman, M.H.; McIntyre, C.R. 2008. A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. J Forest Prod Res 58(11): 6–27. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.508.7748&rep=rep1&type=pdf

Gnanaharan, R.; Mathew, G.; Dhamodaran, T.K. 1983. Protection of rubber wood against the insect borer Sinoxylon anale Les. (Coleoptera : Bostrychidae). J Ind Acad Wood Sci 14(1): 9-11. https://pdfs.semanticscholar.org/c4c2/82a42e8ed5a0fe986ddff678bfbf636aa94b.pdf

Gnanaharan, R.; Mathew, G. 1982. Preservative treatment of rubber wood (Hevea brasiliensis). KFRI Research Report 15: 1-16. https://pdfs.semanticscholar.org/c4c2/82a42e8ed5a0fe986ddff678bfbf636aa94b.pdf

Gopinath, M.; Subbaiya, R.; Selvam, M.M.; Suresh, D.; Rangasamy, K. 2014. Synthesis of Copper Nanoparticles from Nerium oleander Leaf aqueous extract and its Antibacterial Activity. Int J Curr Microbiol App Sci 3(9): 814-818. https://www.ijcmas.com/vol-3-9/M.Gopinath,%20et%20al.pdf

Groenier, J.S.; Lebow, S. 2006. Preservative-treated wood and alternative products in the Forest Service. Tech. Rep. 0677–2809–Missoula Technology and Development Center. 44. Forest Service, United States Department of Agriculture. https://www.fpl.fs.fed.us/documnts/pdf2006/fpl_2006_groenier001.pdf

Gupta, H.; Sharma, K.R.; Sharma, J.N. 2017a. Fungal Inhibition in Wood Treated with Lantana camara L. Extract. In: Wood is Good: Current Trends and Future Prospects in Wood Utilization. Pandey, K; Ramakantha, V; Chauhan, S; Kumar, A. (eds) Springer: Singapore. 269-276. https://doi.org/10.1007/978-981-10-3115-1_25

Gupta, H.; Sharma, K.R.; Chander Lekha.; Bhupender Dutt. 2017b. Potentials of Lantana camara L. leaf extract treatment for the dimensional stability of some lesser known wood species. J Pharmacogn Phytochem 6(4): 263-266. phytojournal.com/archives/?year=2017&vol=6&issue=4&ArticleId=1353

Helal, H. 1983. Some biological informations about the small powder post beetle Lyctus africanus Leone. in Egypt (Coleoptera, Lyctidae). Agric Res Rev 59 (1): 167-175. http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9134577

Hulkoti, N.I.; Taranathm, T.C. 2014. Biosynthesis of nanoparticles using microbes-a review. Coll Surf B: Biointerf 121: 474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027

Humar, M.; Petrič, M.; Pohleven, F. 2001. Leaching of copper from wood treated with copper-based wood preservatives. Drvna industrija 52: 111-116.

Husen, A.; Iqbal, M. 2019. Nanomaterials and plant potential: an overview. In: Nanomaterials and Plant Potential. Husen, A.; Iqbal, M. (Eds) Springer: International Publishing AG, Cham. 3-29. https://doi.org/10.1007/978-3-030-05569-1_1

Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem 13: 2638-2650. https://doi.org/10.1039/C1GC15386B

Indian Standards. 2008. IS 4873: Methods of laboratory testing of wood preservatives against fungi and borers powder post beetles, Second Revision. Part-2, Determination of threshold values of wood preservatives against borers (powder post beetles). 1–5. Bureau of Indian Standards, New Delhi. https://www.services.bis.gov.in:8071/tmp/SR4873_2.pdf

Ito, T. 1983. Tasting behavior of Lyctus brunneus Stephens (Coleoptera: Lyctidae). Appl Ent Zool 18 (2): 289-292. https://doi.org/10.1303/aez.18.289

Kalawate, A. 2013. Evaluation of Copper Ethanolamine Boron Based Wood Preservative to Control Wood Destroying Insects. Mol Entomol 4 (2): 6-12. http://www.ecoevopublisher.com/index.php/me/article/view/632/727

Kartal, S.N.; Green, F.; Clausen, C.A. 2009. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? Int Biodeter Biodegr 63: 490-495. https://doi.org/10.1016/j.ibiod.2009.01.007

Kartika, T.; Yoshimura, T. 2013. Nutritional quality of diet and fecundity in Lyctus africanus (Lesne). Procedia Environ Sci 17: 97 –104. https://doi.org/10.1016/j.proenv.2013.02.016

Khan, S.A.; Shahid, S.; Sajid, M.R.; Noreen, F.; Kanwal, S. 2017. Biogenic Synthesis of CuO Nanoparticles and their Biomedical Applications: A Current Review. Int J Adv Res 5(6):25-946. http://dx.doi.org/10.21474/IJAR01/4495

Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. 2012. Applications of nanomaterials in agricultural production and crop protection: a review. Crop. Prot. 35:64-70. https://doi.org/10.1016/j.cropro.2012.01.007

Kumar, S.; Kumar, D.; Dilbaghi, N. 2017. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Env Sci Pollut Res 24: 926-937. https://doi.org/10.1007/s11356-016-7774-y

Lebow, S.T. 1996. Leaching of wood preservative components and their mobility in the environment—Summary of pertinent literature. Gen. Tech. Rep. FPL–GTR–93, United States Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI. 36. https://doi.org/10.2737/FPL-GTR-93

Lebow, S.T. 2010. Wood Preservation. Wood Handbook: Wood as an Engineering Material. United States Department of Agriculture, Forest Service, Forest Products Laboratory Madison, WI. 328-355. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf

Lee, H.J.; Lee, G.; Jang, N.R.; Yun, J.H.; Song. J.Y.; Kim, B.S. 2011. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1(1): 371-374. https://briefs.techconnect.org/wp-content/volumes/Nanotech2011v1/pdf/146.pdf

Lepage, E.; Salis, A.G. de.; Guedes, E.C.R. 2017. Tecnologia de proteção da madeira. Montana Quimica, São Paulo, SP. Brazil. https://www.montana.com.br/noticias/Tecnologia-da-Madeira-em-novo-livro

Lykidis, C.; Teresa De T.; Conde, M.; Galvan, J.; Mantanis, G. 2016. Termite resistance of beech wood treated with zinc oxide and zinc borate nanocompounds. Wood Mater Sci Eng 13(1): 45–49. https://doi.org/10.1080/17480272.2016.1257651

Majumder, D.R. 2012. Bioremediation: Copper Nanoparticles from Electronic-waste. Int J Eng Sci Technol 4(10): 4388-4389. https://www.ajol.info/index.php/ijest/issue/archive

Mandava, K.; Kadimcharla, K.; Keesara, N.R.; Sumayya, N.F.; Prathyusha, B.; Batchu U.R. 2017. Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. Indian J Pharm Sci 79 (5): 695-700. https://doi.org/10.4172/pharmaceutical-sciences.1000281

Mantanis, G.; Terzi, E.; Kartal, S.N.; Papadouplos, A.N. 2014. Evaluation of mold, decay and termite resistance of pine wood treated with zinc and copper based nanocompounds. Int Biodeter Biodegr 90: 140-144. https://doi.org/10.1016/j.ibiod.2014.02.010

Mittal, A.K.; Chisti, Y.; Banerjee, U.C. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31: 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

Moghaddam, A.B.; Namvar, F.; Moniri, M.; Tahir, S.; Azizi, P.M.; Mohamad, R. 2015. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20: 16540–16565. https://doi.org/10.3390/molecules200916540

Nair, K.S.S.; Mathew, G. 1984. Dried tapioca tuber for laboratory rearing of the bamboo borer, Dinoderus minutus Fabr. (Coleoptera:Bostrychidae). Mater Organ 19(1): 49-54. https://www.inbar.int/resources/article/dried-tapioca-tuber-for-laboratory-rearing-of-the-bamboo-borer-dinoderus-minutus-fabr-coleoptera-bostrychidae/

Nair, S.; Pandey, K.K.; Giridhar, B.N.; Vijayalakshmi, G. 2017. Decay resistance of rubberwood (Hevea brasiliensis) impregnated with ZnO and CuO nanoparticles dispersed in propylene glycol. Int Biodeterior Biodegrad 122: 100-106. https://doi.org/10.1016/j.ibiod.2017.05.008

Nair, S.; Giridhar, B.N.; Pandey, K.K. 2018. UV stabilization of wood by nano metal oxides dispersed in propylene glycol. J Photoch Photobio B 183:1-10. https://doi.org/10.1016/j.jphotobiol.2018.04.007

Oliveira, H.C.; Stolf-Moreira, R.; Martinez, C.B.R.; Grillo, R.; de Jesus, M.B.; Fraceto, L.F. 2015. Nanoencapsulation enhances the post-emergence herbicidal activity of Atrazine against mustard plants. PLOS One 10(7): e0132971. https://doi.org/10.1371/journal.pone.0132971

Peters, B.C.; Creffield, J.W.; Edridge, R.H. 2002. Lyctine (Coleoptera Bostrichidae) pests of timber in Australia: A literature review and susceptibility testing protocol. Aust For 65 (2): 107-119. https://doi.org/10.1080/00049158.2002.10674861

Platten, W.; Luxton, T.; Gerke, T.; Harmon, S.; Sylvest, N.; Bradham, K.; Rogers, K. 2014. Release of Micronized Copper Particles from Pressure Treated Wood Products. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/365. http://nepis.epa.gov/Adobe/PDF/P100LJWI.pdf

Punjabi, K.; Choudhary, P.; Samant, L.; Mukherjee, S.; Vaidya, S.; Chowdhary, A. 2015. Biosynthesis of nanoparticles: a review. Int J Pharm Sci Rev Res 30: 219-226. Google Scholar

Raffi, M.M.; Husen, A. 2019. Impact of fabricated nanoparticles on the rhizospheric microorganisms and soil environment. In: Nanomaterials and Plant Potential. Husen, A.; Iqbal, M. (Eds.): Springer International Publishing AG, Cham. 529-552. https://doi.org/10.1007/978-3-030-05569-1_21

Remadevi, O.K.; Muthukrishnan, R. 1997. Efficacy of chlorpyriphos as protectant of wood against borer and termite attack. Wood News 7(1): 22-25. https://www.cabdirect.org/cabdirect/abstract/19970611219?start=1500

Richardson, H.W. 1997. Handbook of Copper Compounds and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781482277463

Schrofel, A.; Kratosova, G.; Krautova, M.; Dobrocka, E.; Vavra, I. 2011. Biosynthesis of gold nanoparticles using diatoms–silica gold and EPS-gold bionanocomposite formation. J Nanoparticle Res 13: 3207–3216. https://doi.org/10.1007/s11051-011-0221-6

Sekhon, B.S. 2014. Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7: 31-53. https://doi.org/10.2147/NSA.S39406

Shiny, K.S.; Sundararaj, R.; Mamatha, N.; Lingappa, B. 2019. A new approach to wood protection: preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas-Cienc Tecnol 21(3): 347- 356. http://dx.doi.org/10.4067/S0718-221X2019005000307.

Siddiqui, M.A.; Alhadlaq, H.A.; Ahmad, J.; Al-Khedhairy, A.A.; Musarrat, J.; Ahamed, M. 2013. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLOS One 8(8): e69534. https://doi.org/10.1371/journal.pone.0069537

Singh, J.; Dutta, T.; Kim, K. H.; Rawat, M.; Samddar, P.; Kumar, P. 2018. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(84): 1-24. https://doi.org/10.1186/s12951-018-0408-4

Singaravelu, G.; Arockiamary, J.S.; Ganesh Kumar, V.; Govindaraju, K. 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Coll Surf B: Biointerf 57: 97–101. https://doi.org/10.1016/j.colsurfb.2007.01.010

Tan, C.K.S.; Hong, L.T.; Wong, Andrew.; Chang, J.J.M.; Tsang, A; Leong, P.T.; Tang, C.S.; Tan, C.C.L.; Loh, E.K.S.; Ng, W.P. 2003. Understanding timber preservation - a guide to timber and its treatment to enhance wood durability. Published by Malaysian Wood Preserving Association. 41.

Tascioglu, C.; Mesut, Y.; Selim, S.; Caglar, A. 2013. Antifungal properties of some plant extracts used as wood preservatives. Int Biodeterior Biodegrad 85(1): 23-28. https://doi.org/10.1016/j.ibiod.2013.06.004

Temiz, A.; Alfredsenl, G.; Yildiz, U.C.; Engin, D.G.; Kose, G.; Akbas, S.; Yildiz, S. 2014. Leaching and decay resistance of alder and pine wood treated with copper based wood preservatives. Maderas-Cienc Tecnol 16(1): 63-76. https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-221X2014000100006

Terzi, E.; Kartal, S.N.; Yılgör, N.; Rautkari, L.; Yoshimura, T. 2016. Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. Int Biodeterior Biodegrad 107:77–87. https://doi.org/10.1016/j.ibiod.2015.11.010

Tolley, M.P.; Laks, P.E.; Fears, R. 1998. Evaluation of chlorpyrifos and fungicides alone and in combination for control of insects and fungi in wood and wood composites. In 29th Annual Meeting of the International Research Group on Wood Protection, Maastricht, Netherlands, 14-19 June 1998. IRG Secretariat. IRG/WP 98-30187. https://www.irg-wp.com/irgdocs/details.php?6ad45c82-e3c8-4e51-9adf-3b7bac8c35c1

Van Acker, J.; Stevens, M.; Pallaske, M. 1990. Insect resistance of preservative treated tropical plywood against Lyctus. In 21st Annual Meeting of the International Research Group on Wood Protection, Rotorua, New Zealand, 13-19 May 1990. IRG Secretariat. IRG/WP/1453. irg-wp.com/irgdocs/details.php?07ce4347-6d50-4181-86ed-06858602e9b3

Venmalar, D. 2017. Screening of Oils of Pongamia pinnata Linn, Jatropha curcas Linn and Simarouba glauca D.C. for developing Eco-Friendly Wood Preservatives. In: Wood is Good: Current Trends and Future Prospects in Wood Utilization. Pandey, K; Ramakantha, V; Chauhan, S; Kumar, A. (eds) Springer: Singapore. 261-268. https://doi.org/10.1007/978-981-10-3115-1_24

Vijayaraghavan, K.; Ashokkumar, T. 2017. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5: 4866–4883. http://dx.doi.org/10.1016/j.jece.2017.09.026

Wagay, J.A.; Singh, S.; Raffi, M.M.; Rahman, Q.I.; Husen, A. 2019. Impact of carbon- based nanomaterials on plant functioning and rhizosphere. In: Nanomaterials and Plant Potential. Husen, A.; Iqbal, M. (Eds.): Springer International Publishing AG, Cham.553-575. https://doi.org/10.1007/978-3-030-05569-1_22

Zabel, R.A.; Morrell, J.J. 1992. Wood Microbiology: Decay and Its Prevention. Academic Press, London. https://www.elsevier.com/books/wood-microbiology/zabel/978-0-12-775210-5

Zandi-Sohani, N.; Hojjati, M.; Carbonell-Barrachina,A.A. 2012. Bioactivity of Lantana camara L. essential oil against Callosobruchus maculatus (Fabricius). Chilean J Agric Res 72(4): 502–506. http://dx.doi.org/10.4067/S0718-58392012000400007.

Downloads

Published

2021-01-01

How to Cite

Shiny, K. S. ., & Sundararaj, R. . (2021). Biologically synthesised copper oxide and zinc oxide nanoparticle formulation as an environmentally friendly wood protectant for the management of wood borer, Lyctus africanus. Maderas. Ciencia Y Tecnología, 23, 1–12. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/4787

Issue

Section

Article