Efecto en las propiedades mecánicas de una resina pinífera modificada biodegradable, al utilizarla como compatibilizante o acoplante en formulaciones elastoméricas sin o con fibra de agave y hule de poli(estireno-butadieno). Un paso hacia la formulación
DOI:
https://doi.org/10.4067/s0718-221x2021000100464Keywords:
Agente de acoplamiento, compatibilizante, compósito de SBR/fibra, fibra de agave, resina de pino, resina maleinizadaAbstract
En este trabajo se valora la eficiencia de una resina de pino modificada biodegradable (A-30), al utilizarla como compatibilizante o acoplante para sustituir al resorcinol (que es tóxico y no es biodegradable), comparando las propiedades mecánicas (contra formulaciones preparadas usando el sistema resorcinol-hexametilentetramina (R-HMT) en: a) polímeros elastoméricos reticulados de estireno-butadieno (SBR), y: b) compósitos de SBR reforzados con fibra de agave de desecho. Para la comparación como compatibilizante, aquí se preparan formulaciones equivalentes con A-30 o R-HMT. Para la comparación de los compósitos equivalentes, se varía el agente de acoplamiento (R-HMT o A-30) y la cantidad de azufre como agente de entrecruzamiento (2,5 partes por cien de elastómero (phr), 7,5 phr o 15 phr). En las pruebas de tracción a temperatura ambiente, y el análisis mecanodinámico con barridos de temperatura (de - 70 °C a 40 °C) y frecuencia (de 0,4 Hz a 40 Hz), se obtuvieron incrementos en módulos (hasta un 74 % en módulo de Young) y en capacidad de deformación (hasta 260 %), para los materiales conteniendo el agente A-30, por encima de las formulaciones en las que se usó el resorcinol. El mejor desempeño como compatibilizante o acoplante del A-30, se reflejó también con claridad morfológicamente mediante microscopía electrónica de barrido, al mostrar mayor compacidad en la matriz formulada y mayor cercanía entre fibra y matriz en muestras fracturadas criogénicamente. Se ha demostrado aquí, que el A-30 puede sustituir al par R-HMT con éxito, ya que funciona mejor como agente compatibilizante o acoplante y es biodegradable. Este tipo de agentes tiene un gran potencial para contribuir al desarrollo de elastómeros y compósitos flexibles amigables con el medio ambiente.
Downloads
References
Abd-El-Messieh, S.L.; Abd-El-Nour, K.N. 2003. Effect of curing time and sulfur content on the dielectric relaxation of styrene butadiene rubber. J Appl Polym Sci 88(7): 1613–1621. https://doi.org/10.1002/app.11686
ASTM International. 2016. ASTM-D412-16: Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. West Conshohocken, PA, USA. http://www.astm.org/cgi-bin/resolver.cgi?D412-16
Ciesielski, A. 1999. An introduction to rubber technology (1st ed.). Rapra Technology Limited. Shrewsbury, Shropshire, Great Britain.
Consejo Regulador del Tequila. 2019. Reporte 2019 https://www.crt.org.mx/EstadisticasCRTweb/
Debasish, D.; Debapriya, D.; Adhikari, B. 2006. Curing characteristics and mechanical properties of alkali-treated grass-fiber-filled natural rubber composites and effects of bonding agent. J Appl Polym Sci 101(5): 3151–3160. https://doi.org/10.1002/app.23305
Dressler H. 1994. The Use of Resorcinol in Rubber Compositions. In Resorcinol. Topics in Applied Chemistry. Springer, Boston, MA., USA. https://doi.org/10.1007/978-1-4899-0999-2_4
El-Wakil, A.A. 2011. Enhancement of adhesion between EPDM and polyester fabric by using natural rubber modified by maleic anhydride. Int J Polym Sci 2011: 1–5. https://doi.org/10.1155/2011/591948
Flickinger, C.W. 1976. The benzenediols: catechol, resorcinol and hydroquinone—a review of the industrial toxicology and current industrial exposure limits. Am Ind Hyg Assoc J 37(10): 596-606. https://doi.org/10.1080/0002889768507526
Gallo-Corredor, J.A.; Sarria-Villa, R. 2013. Obtención de colofonia y trementina a partir de resina de pino de la especie patula y posterior evaluación de los parámetros de calidad. J Ciencia Ing 5(1): 88–91. https://jci.uniautonoma.edu.co/2013/2013-13.pdf
Geethamma, V.G.; Joseph, R.; Thomas, S. 1995. Short coir fiber-reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment. J Appl Polym Sci 55(4): 583–594. https://doi.org/10.1002/app.1995.070550405
Geethamma, V.G.; Kalaprasad, G.; Groeninckx, G.; Thomas, S. 2005. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos Part A Appl Sci Manuf 36(11): 1499–1506. https://doi.org/10.1016/j.compositesa.2005.03.004
Halim, S.F.; Lawandy, S.N.; Nour, M.A. 2013. Effect of in situ bonding system and surface modification of montmorillonite on the properties of butyl rubber/montmorillonite composites. Polym Compos 34(9): 1559–1565. https://doi.org/10.1002/pc.22573
Inga-Lafebre, J.; Pulido-González, H.; González-Núñez, R.; Hernández-Hernández, M.E.; Rabelero-Velasco, M.; Aranda-García, F.J.; Jasso-Gastinel, C.F. 2019. The Multirole of Modified Natural Gums for Multicomponent Polymers: As Coupling Agents for Polymers Reinforced With Cellulosic Fibers or Compatibilizers for Biodegradable Polymer Blends. Quim Nova 42(3): 296–304. https://doi.org/10.21577/0100-4042.20170333
Jacob, M.; Francis, B.; Thomas, S.; Varughese, K.T. 2006. Dynamical mechanical analysis of sisal/oil palm hybrid fiber‐reinforced natural rubber composites. Polym Compos 27(6): 671–680. https://doi.org/10.1002/pc.20250
Jacob, M.; Thomas, S.; Varughese, K.T. 2004. Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64(7–8): 955–965. https://doi.org/10.1016/S0266-3538(03)00261-6
Jasso-Gastinel, C.F.; Lopez-Carrillo, P.; Mendizabal-Mijares, E. 1992. Mechanical and rheological properties of poly(butadiene-acrylonitrile) rubber compounds reinforced with cellulosic material. Polym Eng Sci 32(6): 443–447. https://doi.org/10.1002/pen.760320610
Jiang, W.; Gu, J. 2020. Nanocrystalline cellulose isolated from different renewable sources to fabricate natural rubber composites with outstanding mechanical properties. Cellulose 27: 5801-5813. https://doi.org/10.1007/s10570-020-03209-3
Lawandy, S.N.; Moustafa, H.; Zahran, M.A., Rabee, M. 2018. Effect of bio-alkyd resin oil content and viscosity on the adhesion of EPDM to polyester fabric. J Adhes Sci Technol 32(3): 302-316. https://doi.org/10.1080/01694243.2017.1354668
Lin, Y.; Liu, S.; Peng, J.; Liu, L. 2016. The filler – rubber interface and reinforcement in styrene butadiene rubber composites with graphene / silica hybrids : A quantitative correlation with the constrained region. Compos Part A Appl Sci Manuf 86: 19–30. https://doi.org/10.1016/j.compositesa.2016.03.029
Liu, X.; Zhao, S.; Zhang, X.; Li, X.; Bai, Y. 2014. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites. Polymer 55(8): 1964–1976. https://doi.org/10.1016/j.polymer.2014.02.067
López-Manchado, M.A.; Arroyo, M. 2002. Short fibers as reinforcement of rubber compounds. Polym Compos 23(4): 666–673. https://doi.org/10.1002/pc.10466
Lu, J.Z.; Wu, Q.; Negulescu, I.I. 2005. Wood-fiber/high-density-polyethylene composites: Coupling agent performance. J Appl Polym Sci 96(1): 93–102. https://doi.org/10.1002/app.21410
Martins, M.A.; Mattoso, L.H.C. 2004. Short sisal fiber-reinforced tire rubber composites: Dynamical and mechanical properties. J Appl Polym Sci 91(1): 670–677. https://doi.org/10.1002/app.13210
Meissner, N.; Rzymski, W.M. 2013. Use of short fibers as a filler in rubber compounds. Autex Res J 13(2): 40–43. https://doi.org/10.2478/v10304-012-0025-5
Mohanty, A.K.; Misra, M.; Drzal, L.T. 2001. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos Interfaces 8(5): 313–343. https://doi.org/10.1163/156855401753255422
Pantamanatsopa, P.; Ariyawiriyanan, W.; Meekeaw, T.; Suthamyong, R.; Arrub, K.; Hamada, H. 2014. Effect of modified jute fiber on mechanical properties of Green rubber composite. Energy Procedia 56: 641–647. https://doi.org/10.1016/j.egypro.2014.07.203
Parambath Kanoth, B.; Thomas, T.; Joseph, J.M.; Narayanankutty, S.K. 2019. Restructuring of coir to microfibers for enhanced reinforcement in natural rubber. Polym Compos 40(1): 414–423. https://doi.org/10.1002/pc.24667
Pérez-Fonseca, A.A.; Robledo-Ortíz, J.R.; Ramirez-Arreola, D.E.; Ortega-Gudiño, P.; Rodrigue, D.; González-Núñez, R. 2014. Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites. Mater Des 64: 35-43. https://doi.org/10.1016/j.matdes.2014.07.025
Poletto, M. 2017. Polypropylene-based wood-plastic composites: Effect of using a coupling agent derived from a renewable resource. Maderas-Cienc Tecnol 19(3): 265–272. https://doi.org/10.4067/S0718-221X2017005000022
Pulido-González, H.; Hernandez, E.; Rabelero Velasco, M.; Sanjuan Raygoza, R.J.; Jasso-Gastinel, C.F. 2014. Valoración mecanotérmica de una resina biodegradable como agente de acoplamiento de materiales compuestos celulósicos/polímero hidrofóbico. Maderas-Cienc Tecnol 16(4): 463–486. https://doi.org/10.4067/S0718-221X2014005000038
Quiroz-Carranza, J.A.; Magaña-Alejandro, M.A. 2015. Natural resins of Mexican plant species: Current and potential end-uses. Madera y Bosques 21(3): 171–183. https://www.redalyc.org/articulo.oa?id=61743002013
Raza, M.A.; Ashraf, M.A.; Westwood, A.V.K.; Jamil, T.; Ahmad, R.; Inam, A.; Deen, K.M. 2016. Maleated high oleic sunflower oil-treated cellulose fiber-based styrene butadiene rubber composites. Polym Compos 37(4): 1113–1121. https://doi.org/10.1002/pc.23273
Seo, G. 1997. Stabilizing the adhesion interphase between rubber compounds and brass film by the addition of resorcinol formaldehyde resin to the rubber. J Adhes Sci Technol 11(11): 1433–1445. https://doi.org/10.1163/156856197X00228
Shahril, D.A.; Azammi, A.M.N.; Zulfadli, S.M. 2017. Reinforcement of kenaf fiber in natural rubber composite for automotive engine rubber mounting. Int J Appl Eng Res 12(24): 14490–14494. http://www.ripublication.com/ijaer17/ijaerv12n24_70.pdf
Soltani, S., Naderi, G., Mohseniyan, S. 2014. Mechanical, morphological and rheological properties of short nylon fiber reinforced acrylonitrile-butadiene rubber composites. Fibers Polym 15(11): 2360-2369. https://doi.org/10.1007/s12221-014-2360-8
Sousa, D.; Biscaia, S.; Viana, T.; Gaspar, M.; Mahendra, V.; Mohan, S.D.; Mateus, A.; Mitchell, G.R. 2019. Rosin Based Composites for Additive Manufacturing. Appl Mech Mater 890: 70–76. https://doi.org/10.4028/www.scientific.net/amm.890.70
Suzuki, N.; Yatsuyanagi, F.; Ito, M.; Kaidou, H. 2002. Effects of surface chemistry of silica particles on secondary structure and tensile properties of silica-filled rubber systems. J Appl Polym Sci 86(7): 1622–1629. https://doi.org/10.1002/app.11050
Tamura, I.; Kagota, K.I.; Yasuda, Y.; Yoneda, S.; Morita, J.; Nakada, N., Kameda, Y.; Kimura K.; Tatarazako, N.; Yamamoto, H. 2012. Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p‐thymol. J Appl Toxicol 33(11): 1222-1229. https://doi.org/10.1002/jat.2771
Thomas, M.G.; Abraham, E.; Jyotishkumar, P.; Maria, H.J.; Pothen, L.A.; Thomas, S. 2015. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. Int J Biol Macromol 81: 768–777. https://doi.org/10.1016/j.ijbiomac.2015.08.053
Tian, G.; Zhuang, J.; Fu, Y.; Wang, Z.; Li, Q. 2019. Enhanced mechanical strength of polyethylene-based lignocellulosic-plastic composites by cellulose fibers. BioResources 14(1): 1668–1678. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_14_1_1668_Tian_Enhanced_Mechanical_Strength_Polyethylene/6610
Varghese, S.; Kuriakose, B.; Thomas, S. 1994. Stress relaxation in short sisal‐fiber‐reinforced natural rubber composites. J Appl Polym Sci 53(8): 1051–1060. https://doi.org/10.1002/app.1994.070530807
Wang, J.; Wu, W.; Wang, W.; Zhang, J. 2011. Effect of a coupling agent on the properties of hemp-hurd-powder-filled styrene-butadiene rubber. J Appl Polym Sci 121(2): 681–689. https://doi.org/10.1002/app.33744
Wisittanawat, U.; Thanawan, S.; Amornsakchai, T. 2014. Mechanical properties of highly aligned short pineapple leaf fiber reinforced - Nitrile rubber composite: Effect of fiber content and Bonding Agent. Polym Test 35: 20–27. https://doi.org/10.1016/j.polymertesting.2014.02.003
Wisojodharmo, L.A.; Arti, D.K.; Pravitasari, R.D.; Hidayat, A.S., Nisa, A.I.; Ariesta, M.N. 2020. Effect of Tackifier Addition on Cushion Compound Formulation for Tire Retreading Application. Indones J App Chem 21(2): 81-90. https://doi.org/10.14203/jkti.v21i2.427
Zhang, B.; Gu, B.; Yu, X. 2015. Failure behavior of resorcinol-formaldehyde latex coated aramid short-fiber-reinforced rubber sealing under transverse tension. J Appl Polym Sci 132(12): 1–8. https://doi.org/10.1002/app.41672
Zhang, X.X.; Lu, C.H.; Liang, M. 2007. Preparation of rubber composites from ground tire rubber reinforced with waste-tire fiber through mechanical milling. J Appl Polym Sci 103(6): 4087–4094. https://doi.org/10.1002/app.25510
Zhou, Y.; Fan, M.; Chen, L.; Zhuang, J. 2015. Lignocellulosic fibre mediated rubber composites: An overview. Compos B Eng 76: 180–191.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.