Automatic identification of charcoal origin based on deep learning
DOI:
https://doi.org/10.4067/s0718-221x2021000100465Keywords:
Charcoal, classification, deep learning, native wood, preprocessingAbstract
The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.
Downloads
References
ABRAF, 2013. ABRAF Statistical Yearbook 2013 - Base Year 2012, Brasília, Brazil.
Albuquerque, Á.R. 2012. Anatomia comparada do lenho e do carvão aplicada na identificação de 76 espécies da floresta amazônica, no estado do Pará, Brasil. Master's Dissertation, University of São Paulo, Piracicaba, Brazil. https://dx.doi.org/10.11606/D.11.2012.tde-20092012-093146.
Andrade, B.G.D.; Vital, B.R.; Carneiro, A.D.C.O.; Basso, V.M.; Pinto, F.D.A.D.C. 2019. Potential of Texture Analysis for Charcoal Classification. FLORAM 26(3): 1-10. http://dx.doi.org/10.1590/2179-8087.124117.
Bayr, U.; Puschmann, O. 2019. Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network. Ecol Inform 50:220–233. https://doi.org/10.1016/j.ecoinf.2019.01.012.
Davrieux, F.; Rousset, P.L.A.; Pastore, T.C.M.; Macedo, L.A. de; Quirino, W.F. 2010. Discrimination of native wood charcoal by infrared spectroscopy. Quim Nova 33(5): 1093–1097. http://dx.doi.org/10.1590/S0100-40422010000500016.
Deng, J.; Dong, W.; Socher, R.; Li-Jia, L.; Fei-Fei, L. 2009. ImageNet: A large-scale hierarchical image database; In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848.
Devijver, P.A.; Kittler, J. 1982. Pattern recognition: A statistical approach. Prentice-Hall, London, UK.
Duda, R.O.; Hart, P.E.; Stork, D.G. 2000. Pattern Classification (2nd Edition). New York, NY, USA: Wiley-Interscience.
Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27: 861-874. https://doi.org/10.1016/j.patrec.2005.10.010.
Gonçalves, T.A.P.; Marcati, C.R.; Scheel-Ybert; R. 2012. The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum, and Pouteria torta from the brazilian cerrado. Iawa J 33(1): 73–90. https://doi.org/10.1163/22941932-90000081.
Goodfellow, I.; Bengio, Y.; Courville, A. 2016. Deep learning. MIT Press. USA. http://www.deeplearningbook.org.
Gu, J. et al. 2018. Recent advances in convolutional neural networks. Pattern Recogn 77: 354–377. https://doi.org/10.1016/j.patcog.2017.10.013.
Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. 2016. Deep learning for visual understanding: A review. Neurocomputing 187: 27–48. https://doi.org/10.1016/j.neucom.2015.09.116.
Hafemann, L.G.; Oliveira, L.S.; Cavalin, P. 2014. Forest species recognition using deep convolutional neural networks. In: 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, pp. 1103–1107. https://doi.org/10.1109/ICPR.2014.199.
Haralick, R.M.; Shanmugam, K.; Dinstein, I. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, vols. SMC-3, no. 6, pp. 610–621. https://doi.org/10.1109/TSMC.1973.4309314.
Ioffe, S.; Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, vol. abs/1502.03167. https://arxiv.org/pdf/1502.03167.pdf.
Jesus, D.S. de; Silva, J.S. 2020. Variação radial de propriedades anatômicas e físicas da madeira de eucalipto. Cadernos de Ciência & Tecnologia 37(1): 26476. http://dx.doi.org/10.35977/0104-1096.cct2020.v37.26476.
Kamilaris, A.; Prenafeta-Boldú, F.X. 2018. Deep learning in agriculture: A survey. Comput and Electron in Agr 147: 70–90. https://doi.org/10.1016/j.compag.2018.02.016.
Khalid, M.; Lee, E.L.Y.; Yusof, R.; Nadaraj, M. 2008. Design of an intelligent wood species recognition system. IJSSST 9(3): 9–19. https://ijssst.info/Vol-09/No-3/paper2.pdf
Knoll, F.J.; Czymmek, V.; Poczihoski, S.; Holtorf, T.; Hussmann, S. 2018. Improving efficiency of organic farming by using a deep learning classification approach. Comput Electron Agric 153: 347–356. https://doi.org/10.1016/j.compag.2018.08.032.
Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence - IJCAI’95, Volume 2: 1137–1143. Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA.
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - NIPS’12 Volume 1: 1097–1105. Curran Associates Inc., Red Hook, NY, USA,
Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. 1998. Gradient-based learning applied to document recognition. In Proceedings of the IEEE 86(11): 2278–2324. https://doi.org/10.1109/5.726791.
Litjens, G. et al. 2017. A survey on deep learning in medical image analysis. Med Image Anal 42: 60–88. https://doi.org/10.1016/j.media.2017.07.005.
Maruyama, TM.; Oliveira, L.S.; Britto, A.S.; Nisgoski, S. 2018. Automatic classification of native wood charcoal. Ecol Inform 46: 1–7. https://doi.org/10.1016/j.ecoinf.2018.05.008.
Ministry of Mines and Energy, 2020. Brazilian Energy Balance - year 2019. Ministry of Mines and Energy, Rio de Janeiro, Brazil. http://biblioteca.olade.org/opac-tmpl/Documentos/cg00828.pdf
Morales, G.; Kemper, G.; Sevillano, G.; Arteaga, D.; Ortega, I.; Telles, J. 2018. Automatic segmentation of Mauritia flexuosa in unmanned aerial vehicle (uav) imagery using deep learning. Forests 9(12):736. https://doi.org/10.3390/f9120736.
Muñiz, G.I.B.; Nisgoski, S.; Shardosin, F.Z.; França, R.F. 2012. Anatomia do carvão de espécies florestais. Cerne 18(3): 471–477. http://dx.doi.org/10.1590/S0104-77602012000300015.
Nisgoski, S.; Magalhães, W.L.E.; Batista, F.R.R.; França, R.F.; Muñiz, G.I.B. de. 2014. Características anatômicas e energéticas do carvão de cinco espécies. Acta Amazon 44(3): 367-372. https://dx.doi.org/10.1590/1809-4392201304572.
Nogueira, K.; Penatti, O.A.B.; dos Santos, J.A. 2017. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn 61: 539–556. https://doi.org/10.1016/j.patcog.2016.07.001.
Oliveira, J. da S. 1997. Caracterização da madeira de eucalipto para a construção civil. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil.
Paske, A. et al. 2019. Pytorch: An imperative style, high-performance deep learning library. In Advances in neural information systems (NeurIPS – 2019). 8026-8037.
Pereira, B.L.C.; Oliveira, A.C.; Carvalho, A.M.M.L.; Carneiro, A. de C.O.; Santos, L.C.; Vital, B.R. 2012. Quality of wood and charcoal from eucalyptus clones for ironmaster use. Int J For Res Article ID 523025. https://doi.org/10.1155/2012/523025.
Ponti, M.A.; Ribeiro, L.S.F.; Nazare, T.S.; Bui, T.; Collomosse, J. 2017. Everything you wanted to know about deep learning for computer vision but were afraid to ask. In 30th SIBGRAPI conference on graphics, patterns and images tutorials (SIBGRAPI-T). 17–41. Niterói, Brazil. https://doi.org/10.1109/SIBGRAPI-T.2017.12.
Rodrigues, L.F.; Naldi, M.C.; Mari, J.F. 2020. Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images. Comput Biol Med 116: 103542. https://doi.org/10.1016/j.compbiomed.2019.103542.
Santos, R.C. 2010. Parâmetros de qualidade da madeira e do carvão vegetal de clones de eucalipto. Ph.D. Thesis, Universidade Federal de Lavras, Lavras, Brazil. http://repositorio.ufla.br/jspui/handle/1/2775
Scherer, D.; Müller, A.; Behnke, S. 2010. Evaluation of pooling operations in convolutional architectures for object recognition. In: International Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg. p. 92-101. https://doi.org/10.1007/978-3-642-15825-4_10.
Simonyan, K.; Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556. https://arxiv.org/pdf/1409.1556.pdf.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. 2016. Rethinking the inception architecture for computer vision. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2818–2826, Las Vegas, NV, USA. https://ieeexplore.ieee.org/document/7780677
Tomazello-Filho, M. 1985. Estrutura anatômica da madeira de oito espécies de eucalipto cultivadas no Brasil. IPEF 29: 25-36, Brazil. https://www.ipef.br/publicacoes/scientia/nr29/cap03.pdf
Zenid, G. J.; Ceccantini, G.C. 2012. Identificação macroscópica de madeiras. IPT, São Paulo, Brazil.
Zhu, X.X. et al. 2017. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosc Rem Sens M 5(4): 8–36. https://doi.org/10.1109/MGRS.2017.2762307.
Wheeler, E.A.; Baas, P. 1998. Wood identification-a review. Iawa J 19(3): 241–264. https://doi.org/10.1163/22941932-90001528.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.