Experimental study on full-scale glulam beams manufactured with Eucalyptus urograndis
DOI:
https://doi.org/10.4067/s0718-221x2023000100405Keywords:
Eucalyptus urograndis, finger-joints, glued laminated timber, hardwood, timber structuresAbstract
Engineered wood products need alternatives of raw materials to their production. The hybrid Eucalyptus urograndis has great potential to supply the demand of this industrial sector. In this context, the present paper aims to analyse the feasibility of using Eucalyptus urograndis in glued laminated timber (glulam) production. To this end, four groups with ten glulam beams each, were produced and tested. An extensive experimental program was performed in order to determine: the stiffness and bending strength of the beams; and the compression strength parallel to grain of the beams. The performance of structural adhesives was verified based on shear tests of glue lines. The experimental mean of stiffness was higher than 14675 MPa and the characteristic value of compression strength parallel to grain achieved a value above 40 MPa. Nevertheless, failure mode of the glulam beams showed that finger-joints reduced bending strength. The glulam beams produced with Eucalyptus urograndis proved to be a feasible alternative due to their mechanical properties. However, this material presents difficulties in finger-joints adhesion.
Downloads
References
Associação Brasileira de Normas Técnicas. 1997. Projeto de estruturas de madeira. ABNT 7190. ABNT. Rio de Janeiro, Brazil. https://www.abntcatalogo.com.br/norma.aspx?ID=3395
Associação Brasileira de Normas Técnicas. 2021. Projeto de estruturas de madeira — Parte 4: Métodos de ensaio para caracterização peças estruturais. ABNT NBR 7190. ABNT. Rio de Janeiro, Brazil.
Associação Brasileira de Normas Técnicas. 2021. Projeto de estruturas de madeira — Parte 6: Método de ensaios para caracterização de madeira lamelada colada estrutural. ABNT NBR 7190 (draft). ABNT. Rio de Janeiro, Brazil.
Ahmad, Z.; Lum, W.C.; Lee, S.H.; Razlan, M.A.; Mohamad, W.H.W. 2017. Mechanical properties of finger jointed beams fabricated from eight Malaysian hardwood species. Constr Build Mater 145: 464–473. https://doi.org/10.1016/j.conbuildmat.2017.04.016
Almeida, D.H.; Cavalheiro, R.S.; de Macêdo, L.B.; Calil Neto, C.; Christoforo, A.L.; Calil Junior, C.; Lahr, F.A.R. 2014. Evaluation of Quality in the Adhesion of Glued Laminated Timber (Glulam) of Paricá and Lyptus Wood Species. Int J Mater Eng 4(3): 114–118. https://doi.org/10.5923/j.ijme.20140403.07
American Society for Testing and Materials. 2013. Standard test method for strength properties of adhesive bonds in shear by compression loading. ASTM D905-08. ASTM. West Conshohocken, PA, USA. https://www.astm.org/DATABASE.CART/HISTORICAL/D905-08R13.htm
Booth, T.H.; Jovanovic, T.; Arnold, R.J. 2017. Planting domains under climate change for Eucalyptus pellita and Eucalyptus urograndis in parts of China and South East Asia. Aust For 80(1): 1–9. https://doi.org/10.1080/00049158.2016.1275101
Brito, L.D.; Calil Junior, C. 2018. Optimization semi-rigid connections in frame models: Experimental tests of connections with aluminum alloy profiles in Glulam Lyptus®. In WCTE 2018 - World Conference on Timber Engineering. Seoul, Republic of Korea.
Calil Neto, C.; Christoforo, A.L.; Lahr, F.A.R., Calil Júnior, C. 2014. Analysis of Specie – Treatment - Adhesive Combinations for Glulam Purpose. Int J Mater Eng 4(1): 41–47. https://doi.org/10.5923/j.ijme.20140401.06
Calil Neto, C.; Molina, J.C.; Calil Junior, C.; Lahar, F.A.R. 2017. Modelagem numérica do comportamento de ligações com parafusos auto-atarraxantes em X em corpos de prova de MLC com madeiras do tipo Eucalipto urograndis. Rev Mater 22(1). https://doi.org/10.1590/S1517-707620170001.0121
Calil Neto, C.; Molina, J.C.; Calil Junior, C.; Lahr, F.R. 2016. Specie – treatment - adhesive combinations for glulam purpose. Rev Eng Civ IMED 3(2): 16–23. https://doi.org/10.18256/2358-6508/rec-imed.v3n2p16-23
Clerc, G.; Lehmann, M.; Gabriel, J.; Salzgeber, D.; Pichelin, F.; Strahm, T.; Niemz, P. 2018. Improvement of ash (Fraxinus excelsior L.) bonding quality with one-component polyurethane adhesive and hydrophilic primer for load-bearing application. Int J Adhes Adhes 85: 303–307. https://doi.org/10.1016/j.ijadhadh.2018.06.017
dos Santos, L.L. 2014. Avaliação estrutural de vigas de madeira laminada colada. Dissertation, Universidade Federal do Espírito Santo, UFES. Vitoria, Brazil. https://repositorio.ufes.br/bitstream/10/3981/1/tese_8492_Lorenzo%20Lube%20dos%20Santos.pdf (In Portuguese).
European Committee for Standardization. 2013. Timber structures — Glued laminated timber and glued solid timber — Requirements. EN 14080:2013. EN. Brussels, Belgium.
European Committee for Standardization. 2016. Timber structures - Calculation and verification of characteristic values. EN 14358:2016. EN. Brussels, Belgium.
IBÁ. 2017. Relatório 2017. Indústria Brasileira de Árvores. https://iba.org/datafiles/publicacoes/pdf/iba-relatorioanual2017.pdf
International Organization for Standardization. 2014. Timber structures — strength graded timber — test methods for structural properties. ISO 13910:2014(E). ISO. Geneva, Swiss. https://www.iso.org/standard/52977.html
Kamke, F.A.; Lee, J.N. 2007. Adhesive penetration in wood - A review. Wood Fiber Sci 39(2): 205–220. https://wfs.swst.org/index.php/wfs/article/view/641/641
Knorz, M.; Schmidt, M.; Torno, S.; van de Kuilen, J.W. 2014. Structural bonding of ash (Fraxinus excelsior L.): Resistance to delamination and performance in shearing tests. Eur J Wood Wood Prod 72(3): 297–309. https://doi.org/10.1007/s00107-014-0778-8
Lehmann, M.; Schlegel, S.; Ammann, S.; Beyer, M.; Aehlig, K.; Jung, H.; Niemz, P. 2016. Investigation of the bond quality of semi industrially produced ash glulam. In WCTE 2016 - World Conference on Timber Engineering. Vienna, Austria.
López, L.F.; Correal, J.F. 2009. Exploratory study of the glued laminated bamboo Guadua angustifolia as a structural material. Maderas-Cienc Tecnol 11(3): 171–182. https://doi.org/10.4067/S0718-221X2009000300001
Moritani, F.Y.; Calil Junior, C. 2018. Comparação da resistência ao cisalhamento paralelo às fibras do Eucalyptus urograndis: corpos de provas isentos de defeitos x peças estruturais. In XVI Encontro Brasileiro em Madeiras e em Estruturas de Madeira e III Congresso Latino-americano de Estruturas de Madeira. São Carlos, Brazil. http://soac.eesc.usp.br/index.php/ebramem/xviebramem/paper/view/1157/704
Moya, L.; Gomar, C.P.; Vega, A.; Sánchez, A.; Torino, I.; Baño, V. 2019. Relationship between manufacturing parameters and structural properties of Eucalyptus grandis glued laminated timber. Maderas-Cienc Tecnol 21(3): 327–340. https://doi.org/10.4067/S0718-221X2019005000305
Nadir, Y.; Nagarajan, P. 2014. The behavior of horizontally glued laminated beams using rubber wood. Constr Build Mater 55: 398–405. https://doi.org/10.1016/j.conbuildmat.2014.01.032
Negrão, D.R.; da Silva Júnior, T.A.F.; Passos, J.R.S.; Sansígolo, C.A.; Minhoni, M.T.A.; Furtado, E.L. 2014. Biodegradation of eucalyptus urograndis wood by fungi. Int Biodeterior Biodegrad 89: 95–102. https://doi.org/10.1016/j.ibiod.2014.01.004
Özçifçi, A.; Yapici, F. 2008. Structural performance of the finger-jointed strength of some wood species with different joint configurations. Constr Build Mater 22: 1543–1550. https://doi.org/10.1016/j.conbuildmat.2007.03.020
Pereira, M.C.M.; Calil Neto, C.; Icimoto, F.H.; Calil Junior, C. 2016. Evaluation of tensile strength of a Eucalyptus grandis and Eucalyptus urophyla hybrid in wood beams bonded together by means of finger joints and polyurethane-based glue. Mater Res 19(6): 1270–1275. https://doi.org/10.1590/1980-5373-MR-2016-0072
Segundinho, P.G.A.; Calil Neto, C.; Dias, A.A.; Calil Junior, C.; Christoforo, A.L. 2014. Evaluation of Brazilian reforestation species in glulam beams before and after preservative chemical treatments. Int J Mater Eng 4(6): 192–195. https://doi.org/10.5923/j.ijme.20140406.02
Segundinho, P.G.A.; Carreira, M.R.; Calil Neto, C.; Regazzi, A.J.; Dias, A.A.; Calil Junior, C. 2013. Avaliação do módulo de elasticidade de peças de madeira laminada colada (MLC) obtido por meio do ensaio de vibração transversal. Ambient Constr 13(2): 7–14. https://doi.org/10.1590/s1678-86212013000200002
Serrano, E. 2003. Mechanical Performance and Modelling of Glulam. Chapter 5. In: Timber Engineering. Thelandersson, S.; Larsen, H.J. (1st ed.). John Wiley & Sons Ltd, Chichester, England. https://www.wiley.com/en-us/Timber+Engineering-p-9780470844694
Sharma, S.K.; Shukla, S.R.; Shashikala, S.; Poornima, V.S. 2015. Axial variations in anatomical properties and basic density of Eucalypt urograndis hybrid (Eucalyptus grandis × E. urophylla) clones. J For Res 26(3): 739–744. https://doi.org/10.1007/s11676-015-0080-6
Stark, N.M.; Cai, Z.; Carll, C. 2010. Wood-Based Composite Materials Panel Products, Glued-Laminated Timber, Structural Composite Lumber, and Wood-Nonwood Composite Materials. Chapter 11. In: Wood Handbook - Wood as an Engineering Material. Ross, R.J. (1st ed.). General Technical Report FPL-GTR-190, Madison, USA. https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf
Tran, V.D.; Oudjene, M.; Méausoone, P.J. 2016. Experimental investigation on full-scale glued oak solid timber beams for structural bearing capacity. Constr Build Mater 123: 365–371. https://doi.org/10.1016/j.conbuildmat.2016.07.002
Wright, J.A. 1997. A review of the worldwide activities in tree improvement for Eucalyptus grandis, Eucalyptus urophylla and the hybrid urograndis. In 24 th Biennial Southern Forest Tree Improvement Conference. Orlando, United States of America.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Reconocimiento de Creative Commons CC-BY que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.