Effect of heat treatment on physical, mechanical and chemical properties of angelim wood

Authors

  • Marcella Hermida de Paula
  • Joaquim Carlos Gonçalez
  • Rubén A. Ananías
  • Gèrard Janin

DOI:

https://doi.org/10.4067/s0718-221x2023000100410

Keywords:

Chemical analysis, dimensional stability, Dinizia excelsa, heat treatment, technological properties

Abstract

This study had the objective to heat treated angelim vermelho (red) wood and then to analyze its effects on the physical, mechanical and chemical properties of the wood. The wood was treated at 180 ºC and 215 °C for 20 min and 40 min in a muffle furnace. The basic density, shrinkage, anisotropy, the modulus of rupture and modulus of elasticity, as well as the holocellulose, lignin, extractives and ash content values were obtained for the treated and untreated (control) wood. The results indicated that the basic density was not changed and there was a decrease in volumetric shrinkage in the most severe treatment. The modulus of rupture did not change and the chemical analysis indicated a decrease in the holocellulose and extractives content resulting in lignin content percentage increase, mainly in the most severe test.

Downloads

Download data is not yet available.

References

ASSISTAT. 2016. Versão 7.7 beta. http://www.assistat.com

Aytin, A.; korkut, S.; Ünsal, O.; Cakicier, N. 2015. The effects of heat treatment with the ThermoWood® method on the equilibrium moisture content and dimensional stability of wild cherry wood. BioResources (10)2: 2083-2093. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_2_2083_Aytin_Heat_Treatment_Thermowood_Method

Bal, B. 2013. Comparative Study of the Physical Properties of Thermally Treated Poplar and Plane Woods. BioResources (8)4: 6493-6500. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/4704

Barauna, E.E.P.; da Silva Vieira, R.; Monteiro, T.C.; Arantes, M.D.C.; de Carvalho, D.M.; Lima, M.T. 2011. Tratamento térmico de madeira serrada do angelim pedra (Dinizia excelsa Ducke) com boro. J Biotechnol Biodivers 2(1). (In portuguese).

Borges, L.; Quirino, W. 2004. Higroscopicidade da madeira de Pinus caribaea var. hondurensis tratado termicamente. Biomass Energ 1(2): 173-182. (In portuguese). http://mundoflorestal.com.br/arquivos/higroscopicidade.pdf

Borrega, M.; Kärenlampi, P. 2008. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh Werkst 66: 63-69. https://doi.org/10.1007/s00107-007-0207-3

Brito, J.; Garcia, J.; Bortoletto, G.; das Chagas Pessoa, M.; da Silva, P. 2006. Densidade básica e retratibilidade da madeira de Eucalyptus grandis, submetida a diferentes temperaturas de termorretificação. Cerne 12(2): 182-188. (In portuguese). https://www.redalyc.org/pdf/744/74412209.pdf

Brito, J.; Silva, F.; Leão, M.; Almeida, G. 2008. Chemical composition changes in Eucalyptus and Pinus woods submitted to heat treatment. Bioresour Technol 99(18): 8545-8548. https://www.sciencedirect.com/science/article/abs/pii/S0960852408003064

Batista, D.; Tomaselli, I.; Klietzke, R. 2011. Efeito do tempo e da temperatura de modificação térmica na redução do inchamento máximo da madeira de Eucalyptus grandis Hill ex Maiden. Ciencia Florestal 21(3): 533-540. (In portuguese). https://doi.org/10.5902/198050983810

Calonego, F. 2017. Caracterização tecnológica da madeira de Schizolobium parahyba (Vell.) blake modificada termicamente. PhD. Thesis (Doutorado em Ciências Agronômicas). Universidade Estadual Paulista. Botucatu, São Paulo, Brazil. (In portuguese).

Chichignoud, M.; Deon, G.; Detienne, P.; Parant, B.; Vantomme, P. 1990. Atlas de maderas tropicales de America Latina. Organización Internacional de las Maderas Tropicales/ Centre Technique Forestier Tropical.

Comisión Panamericana de Normas Técnicas. 1972a. Maderas: método de determinación del peso especifico aparente. COPANT 461. La Paz, Bolivia.

Comisión Panamericana de Normas Técnicas. 1972b. Maderas: método de determinación de contracción. COPANT 462. La Paz, Bolivia.

Comisión Panamericana de Normas Técnicas. 1972c. Maderas: método de determinación de flexión estática. COPANT 555. La Paz, Bolivia.

Conte, B.; Missio, A.L.; Pertuzzatti, A.; de Cademartori, P.H.; Gatto, D.A. 2014. Propriedades físicas e colorimétricas da madeira termorretificada de Pinus elliottii var. elliottii. Sci For 42(104): 555-563. https://www.ipef.br/publicacoes/scientia/nr104/cap09.pdf

Hill, C. 2006. Wood modification: chemical, thermal and other processes. West Sussex: John Wiley and Sons. https://www.wiley.com/en-gb/Wood+Modification%3A+Chemical%2C+Thermal+and+Other+Processes-p-9780470021729#description-section

Esteves, B; Pereira, H. 2009. Novos métodos de protecção da madeira. In: 6º Congresso Florestal Nacional -A floresta num mundo globalizado. (In portuguese).

Esteves, B; Şahin, S; Ayata, U; Domingos, I; Ferreira, J; Gürleyen, L. 2021. Effect of heat treatment on shore-D hardness of some wood species. BioResources 16(1): 1482. http://dx.doi.org/10.15376/biores.16.1.1482-1495

Ferreira, M.; Melo, R.; Zaque, L.; Stangerlin, D. 2019. Propriedades físicas e mecânicas da madeira de angelim-pedra submetida a tratamento térmico. Tecnol Metal Mater Min 16(1): 3-7. http://dx.doi.org/10.4322/2176-1523.20191297 (In portuguese). https://tecnologiammm.com.br/journal/tmm/article/doi/10.4322/2176-1523.20191297

Hillis, W.; Rozsa, A.N. 1985. High temperature and chemical effects on wood stability. Wood SciTechnol 19: 57-66. https://doi.org/10.1007/BF00354753

Instituto Brasileiro de Desenvolvimento Florestal. IBDF. 1983. Potencial Madeireiro do Grande Carajás. IBDF/LPF. Brasília, Brazil. 134 p. (In portuguese)

Instituto de pesquisas tecnológicas do estado de São Paulo. IPT. 2013. Catálogo de madeiras brasileiras para a construção civil. São Paulo, Brazil. (In portugese).

Juizo, C.; Zen, L.; Klitzke, W.; França, M.; Cremonez, V.; Klitzke, R. 2018. Propriedades tecnológicas da madeira de eucalipto submetida ao tratamento térmico. Nativa 6(5): 537-542. (In portuguese). https://doi.org/10.31413/nativa.v6i5.5666

Kocaefe, D.; Kocaefee, Y.; Oumarou, N. 2015. Novel high temperature heat treatment process for wood. In International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. South Africa.

LAP 003. 1995. Chemical analysis and testing. Laboratory Analytical Procedures. Determination of Acid-Insoluble Lignin in Biomass.

LAP 004. 1996. Chemical analysis and testing. Laboratory Analytical Procedures. - Determination of Acid-Soluble Lignin in Biomass.

Larenstein, J.R. 2009. Durability of wood. University of Applied Sciences, Prochoice, Wageningen University, Netherlands. p.69.

Menezes, W.; Santini, E.; de Souza, J.; Gatto, D.; Haselein, C. 2014. Modificação térmica nas propriedades físicas da madeira. Cienc Rural 44(6): 1019-1024. (In portuguese). https://www.redalyc.org/pdf/331/33131128011.pdf

Menezes, W.M. 2017. Efeito da modificação térmica em escala industrial na qualidade da madeira de Tectona grandis Linn. F. PhD.Tesis. Universidade Federal de Santa Maria. Rio Grande do Sul, 2017. (In portuguese).

Motta, J.; Alves, R.; Paes, J. 2013. Efeito do tratamento térmico na resistência à flexão estática da madeira de Tectona grandis L.F. Construindo 5(2). http://revista.fumec.br/index.php/construindo/article/view/2117 (In portuguese).

Moura, L.F.; Brito, J.O.; Júnior, G.B. 2012. Efeitos da termorretificação na perda de massa e propriedades mecânicas de Eucalyptus grandis e Pinus caribaea VAR. hondurensis. Floresta 42(2): 305-314. (In portuguese). https://revistas.ufpr.br/floresta/article/view/17635

Nabil, E.; Mahmoud, N.; Youssef, A.; Saber, E.; Kamel, S. 2018. Evaluation of Physical, Mechanical and Chemical Properties of Cedar and Sycamore. Woods after Heat Treatment. Egypt J Chem 61(6): 1131-1149. https://ejchem.journals.ekb.eg/article_10069.html

Nascimento, C.; Garcia, J.; Diáz, M. 1997. Agrupamento de espécies madeireiras da amazônia em função da densidade básica e propriedades mecânicas. Madera y Bosques 3(1) (In portuguese). https://myb.ojs.inecol.mx/index.php/myb/article/view/1378

Pertuzzatti, A.; Missio, A.; Conte, B.; De Souza, S.; Santini, E.; Haselein, C. 2016 . Propriedades físicas da madeira de Pinus elliottii var. elliottii ter-morretificada sob diferentes atmosferas. Ci Madeira 7: 7-15. (In portuguese). https://periodicos.ufpel.edu.br/ojs2/index.php/cienciadamadeira/article/view/5517

Poubel, D; Garcia, A.; Santos, A.; Lima, O.; Santos, H. 2013. Efeito da termorretificação nas propriedades físicas e químicas da madeira de Pinus caribaea. Cerne 19(3): 391-398. (In portuguese). https://www.scielo.br/scielo.php?pid=S0104-77602013000300005&script=sci_arttext&tlng=pt

Severo, E.T.D.; Calonego, F.W.; Sansígolo, C.A. 2012. Physical and chemical changes in juvenile and mature woods of Pinus elliottii var. elliottii by thermal modification. Eur J Wood Prod 70: 741-747. https://doi.org/10.1007/s00107-012-0611-1

Stamm, A.; Burr, H.; Kline, A. 1946 Heat Stabilized wood (Staybwood). Forest Products Laboratory, USA.

Surini, T.; Charrier, F.; Malvestio, J.; Charrier, B.; Moubarik, A.; Castéra, P.; Grelier, S. 2012. Physical properties and termite durability of maritime pine (Pinus pinaster Ait.) heat-treated under vacuum pressure. Wood Sci Technol 46(1): 487-501. https://doi.org/10.1007/s00226-011-0421-3

Takeshita, S; Jankowsky, I.P. 2015. Redução na movimentação dimensional da madeira de Jatobá (Hymenaea sp.) e Muiracatiara (Astronium sp.) submetidas a tratamento térmico adicional. Sci For 43(106): 345-352. (In portuguese). https://www.ipef.br/publicacoes/scientia/nr106/cap10.pdf

Technical Association of the Pulp and Paper Industry. TAPPI. 1996. Solvent extractives of wood and pulp. Atlanta. TAPPI test methods T 204 om-88. Tappi Technology Park, Atlanta, USA.

Technical Association of the Pulp and Paper Industry. TAPPI. 1996. Ash in wood, pulp, paper and paperboard: combustion at 525ºC. TAPPI test methods T 211 om-93. Tappi Technology Park, Atlanta, USA

Technical Association of the Pulp and Paper Industry. TAPPI. 1996. Preparation of wood for chemical analysis. TAPPI test methods T 264 om-88. Tappi. Technology Park, Atlanta, USA.

Technical Association of the Pulp and Paper Industry. TAPPI. 1996. Sampling and preparing wood for analysis. TAPPI test methods T 257 cm-85. Tappi. Technology Park, Atlanta, USA.

Vernois, M. 2000. Heat treatment of wood in France – state of the art. Centre Technique du Bois et de l’Ameublement. Paris, France.

Winandy, J.E.; Rowell, R.M. 2005. Chemistry of wood strength. Pages: 303-347. In Handbook of wood chemistry and wood composites. (Rowell, R. Ed.). CRC Press LLC, Boca Raton, Florida, USA.

Zhang, Y.M.; Yu, Y.L.; Yu, W.J. 2013. Effect of thermal treatment on the physical and mechanical properties of Phyllostachys pubescens bamboo. Eur J Wood Prod 71: 61-67. https://doi.org/10.1007/s00107-012-0643-6

Downloads

Published

2022-11-23

How to Cite

Hermida de Paula, M. ., Gonçalez, J. C. ., Ananías, R. A. ., & Janin, G. . (2022). Effect of heat treatment on physical, mechanical and chemical properties of angelim wood. Maderas-Cienc Tecnol, 25, 1–12. https://doi.org/10.4067/s0718-221x2023000100410

Issue

Section

Article